900 resultados para Biomedical technicians


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Team games conceptualized as dynamical systems engender a view of emergent decision-making behaviour under constraints, although specific effects of instructional and body-scaling constraints have yet to be verified empirically. For this purpose, we studied the effects of task and individual constraints on decision-making processes in basketball. Eleven experienced female players performed 350 trials in 1 vs. 1 sub-phases of basketball in which an attacker tried to perturb the stable state of a dyad formed with a defender (i.e. break the symmetry). In Experiment 1, specific instructions (neutral, risk taking or conservative) were manipulated to observe effects on emergent behaviour of the dyadic system. When attacking players were given conservative instructions, time to cross court mid-line and variability of the attacker's trajectory were significantly greater. In Experiment 2, body-scaling of participants was manipulated by creating dyads with different height relations. When attackers were considerably taller than defenders, there were fewer occurrences of symmetry-breaking. When attackers were considerably shorter than defenders, time to cross court mid-line was significantly shorter than when dyads were composed of athletes of similar height or when attackers were considerably taller than defenders. The data exemplify how interacting task and individual constraints can influence emergent decision-making processes in team ball games.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to determine the cellular aging of osteophyte-derived mesenchymal cells (oMSCs) in comparison to patient-matched bone marrow stromal cells (bMSCs). Extensive expansion of the cell cultures was performed and early and late passage cells (passages 4 and 9, respectively) were used to study signs of cellular aging, telomere length, telomerase activity, and cell-cycle-related gene expression. Our results showed that cellular aging was more prominent in bMSCs than in oMSCs, and that oMSCs had longer telomere length in late passages compared with bMSCs, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSCs and not in bMSCs. In osteophyte tissues telomerase-positive cells were found to be located perivascularly and were Stro-1 positive. Fifteen cell-cycle regulator genes were investigated and only three genes (APC, CCND2, and BMP2) were differentially expressed between bMSC and oMSC. Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared with bMSCs, by preventing replicative senescence. J. Cell. Biochem. 108: 839-850, 2009. (c) 2009 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades, concepts and ideas from James J. Gibson’s theory of direct perception in ecological psychology have been applied to the study of how perception and action regulate sport performance. This article examines the influence of different streams of thought in ecological psychology for studying cognition and action in the diverse behavioural contexts of sport and exercise. In discussing the origins of ecological psychology it can be concluded that psychologists such as Lewin, and to some extent Heider, provided the initial impetus for the development of key ideas. We argue that the papers in this special issue clarify that the different schools of thinking in ecological psychology have much to contribute to theoretical and practical developments in sport and exercise psychology. For example, Gibson emphasized and formalized how the individual is coupled with the environment; Brunswik raised the issue of the ontology of probability in human behaviour and the problem of representative design for experimental task constraints; Barker looked carefully into extra-individual behavioural contexts and Bronfenbrenner presented insights pertinent to the relations between behaviour contexts, and macro influences on behaviour. In this overview, we highlight essential issues from the main schools of thought of relevance to the contexts of sport and exercise, and we consider some potential theoretical linkages with dynamical systems theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to provide a contemporary summary of statistical and non-statistical meta-analytic procedures that have relevance to the type of experimental designs often used by sport scientists when examining differences/change in dependent measure(s) as a result of one or more independent manipulation(s). Using worked examples from studies on observational learning in the motor behaviour literature, we adopt a random effects model and give a detailed explanation of the statistical procedures for the three types of raw score difference-based analyses applicable to between-participant, within-participant, and mixed-participant designs. Major merits and concerns associated with these quantitative procedures are identified and agreed methods are reported for minimizing biased outcomes, such as those for dealing with multiple dependent measures from single studies, design variation across studies, different metrics (i.e. raw scores and difference scores), and variations in sample size. To complement the worked examples, we summarize the general considerations required when conducting and reporting a meta-analysis, including how to deal with publication bias, what information to present regarding the primary studies, and approaches for dealing with outliers. By bringing together these statistical and non-statistical meta-analytic procedures, we provide the tools required to clarify understanding of key concepts and principles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Particularly, highway design reduces the driving task mainly to a lane-keeping one. It contributes to hypovigilance and road crashes as drivers are often not aware that their driving behaviour is impaired. Monotony increases fatigue, however, the fatigue community has mainly focused on endogenous factors leading to fatigue such as sleep deprivation. This paper focuses on the exogenous factor monotony which contributes to hypovigilance. Objective measurements of the effects of monotonous driving conditions on the driver and the vehicle's dynamics is systematically reviewed with the aim of justifying the relevance of the need for a mathematical framework that could predict hypovigilance in real-time. Although electroencephalography (EEG) is one of the most reliable measures of vigilance, it is obtrusive. This suggests to predict from observable variables the time when the driver is hypovigilant. Outlined is a vision for future research in the modelling of driver vigilance decrement due to monotonous driving conditions. A mathematical model for predicting drivers’ hypovigilance using information like lane positioning, steering wheel movements and eye blinks is provided. Such a modelling of driver vigilance should enable the future development of an in-vehicle device that detects driver hypovigilance in advance, thus offering the potential to enhance road safety and prevent road crashes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In sport and exercise biomechanics, forward dynamics analyses or simulations have frequently been used in attempts to establish optimal techniques for performance of a wide range of motor activities. However, the accuracy and validity of these simulations is largely dependent on the complexity of the mathematical model used to represent the neuromusculoskeletal system. It could be argued that complex mathematical models are superior to simple mathematical models as they enable basic mechanical insights to be made and individual-specific optimal movement solutions to be identified. Contrary to some claims in the literature, however, we suggest that it is currently not possible to identify the complete optimal solution for a given motor activity. For a complete optimization of human motion, dynamical systems theory implies that mathematical models must incorporate a much wider range of organismic, environmental and task constraints. These ideas encapsulate why sports medicine specialists need to adopt more individualized clinical assessment procedures in interpreting why performers' movement patterns may differ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although previous work in nonlinear dynamics on neurobiological coordination and control has provided valuable insights from studies of single joint movements in humans, researchers have shown increasing interest in coordination of multi-articular actions. Multi-articular movement models have provided valuable insights on neurobiological systems conceptualised as degenerate, adaptive complex systems satisfying the constraints of dynamic environments. In this paper, we overview empirical evidence illustrating the dynamics of adaptive movement behavior in a range of multi-articular actions including kicking, throwing, hitting and balancing. We model the emergence of creativity and the diversity of neurobiological action in the meta-stable region of self organising criticality. We examine the influence on multi-articular actions of decaying and emerging constraints in the context of skill acquisition. We demonstrate how, in this context, transitions between preferred movement patterns exemplify the search for and adaptation of attractor states within the perceptual motor workspace as a function of practice. We conclude by showing how empirical analyses of neurobiological coordination and control have been used to establish a nonlinear pedagogical framework for enhancing acquisition of multi-articular actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds. Quantitative and visual comparisons show a strong correlation between the local accessible pore radius and bone ingrowth; for well connected samples a cutoff accessible pore radius of approximately 100 microM is observed for ingrowth. The elastic properties of different types of scaffolds are simulated and can be described by standard cellular solids theory: (E/E(0))=(rho/rho(s))(n). Hydraulic conductance and diffusive properties are calculated; results are consistent with the concept of a threshold conductance for bone ingrowth. Simple simulations of local flow velocity and local shear stress show no correlation to in vivo bone ingrowth patterns. These results demonstrate a potential for 3D imaging and analysis to define relevant pore scale morphological and physical properties within scaffolds and to provide evidence for correlations between pore scale descriptors, physical properties and bone ingrowth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to review the existing instrumental methods to monitor airborne nanoparticle in different types of indoor and outdoor environments in order to detect their presence and to characterise their properties. Firstly the terminology and definitions used in this field are discussed, which is followed by a review of the methods to measure particle physical characteristics including number concentration, size distribution and surface area. An extensive discussion is provided on the direct methods for particle elemental composition measurements, as well as on indirect methods providing information on particle volatility and solubility, and thus in turn on volatile and semivolatile compounds of which the particle is composed. A brief summary of broader considerations related to nanoparticle monitoring in different environments concludes the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersion characteristics of respiratory droplets in indoor environments are of special interest in controlling transmission of airborne diseases. This study adopts an Eulerian method to investigate the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0~10.0μm in an office room with three air distribution methods, i.e. mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD). The diffusion, gravitational settling, and deposition mechanism of particulate matters are well accounted in the one-way coupling Eulerian approach. The simulation results find that exhaled droplets with diameters up to 10.0μm from normal respiration process are uniformly distributed in MV, while they are trapped in the breathing height by thermal stratifications in DV and UFAD, resulting in a high droplet concentration and a high exposure risk to other occupants. Sneezed/coughed droplets are diluted much slower in DV/UFAD than in MV. Low air speed in the breathing zone in DV/UFAD can lead to prolonged residence of droplets in the breathing zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer represents a major public health concern in Australia. Causes of cancer are multifactorial with lack of physical activity being considered one of the known risk factors, particularly for breast and colorectal cancers. Participating in exercise has also been associated with benefits during and following treatment for cancer, including improvements in psychosocial and physical outcomes, as well as better compliance with treatment regimens, reduced impact of disease symptoms and treatment-related side effects, and survival benefits for particular cancers. The general exercise prescription for people undertaking or having completed cancer treatment is of low to moderate intensity, regular frequency (3-5 times/week) for at least 20 minutes per session, involving aerobic, resistance or mixed exercise types. Future work needs to push the boundaries of this exercise prescription, so that we can better understand what constitutes optimal, desirable and necessary frequency, duration, intensity and type, and how specific characteristics of the individual (e.g., age, cancer type, treatment, presence of specific symptoms) influence this prescription. What follows is a summary of the cancer and exercise literature, in particular the purpose of exercise following diagnosis of cancer, the potential benefits derived by cancer patients and survivors from participating in exercise programs, and exercise prescription guidelines and contraindications or considerations for exercise prescription with this special population. This report represents the position stand of the Australian Association of Exercise and Sport Science on exercise and cancer recovery and has the purpose of guiding Accredited Exercise Physiologists in their work with cancer patients.