953 resultados para Antimalarial-vaccine
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated the effect of Matricaria chamomilla and vaccination frequency on cattle immunization against rabies. Four groups (n = 15/group) were treated with or without Matricaria chamomilla CH12 and vaccinated with one or two doses of rabies vaccine (30 day interval). No effect of chamomile was found on cattle immunization against rabies; however, antibody titers were protective in cattle vaccinated twice, while 93.3% of cattle vaccinated only once had titers under 0.5 UI/ml after 60 days. In conclusion, the use of chamomile did not alter the Immoral immune response in cattle, and two vaccine doses are suggested for achieving protective antibody titers.
Resumo:
Background: Cysticercosis and hydatidosis seriously affect human health and are responsible for considerable economic loss in animal husbandry in non-developed and developed countries. S3Pvac and EG95 are the only field trial-tested vaccine candidates against cysticercosis and hydatidosis, respectively. S3Pvac is composed of three peptides (KETc1, GK1 and KETc12), originally identified in a Taenia crassiceps cDNA library. S3Pvac synthetically and recombinantly expressed is effective against experimentally and naturally acquired cysticercosis.Methodology/ Principal Findings: In this study, the homologous sequences of two of the S3Pvac peptides, GK1 and KETc1, were identified and further characterized in Taenia crassiceps WFU, Taenia solium, Taenia saginata, Echinococcus granulosus and Echinococcus multilocularis. Comparisons of the nucleotide and amino acid sequences coding for KETc1 and GK1 revealed significant homologies in these species. The predicted secondary structure of GK1 is almost identical between the species, while some differences were observed in the C terminal region of KETc1 according to 3D modeling. A KETc1 variant with a deletion of three C-terminal amino acids protected to the same extent against experimental murine cysticercosis as the entire peptide. on the contrary, immunization with the truncated GK1 failed to induce protection. Immunolocalization studies revealed the non stage-specificity of the two S3Pvac epitopes and their persistence in the larval tegument of all species and in Taenia adult tapeworms.Conclusions/ Significance: These results indicate that GK1 and KETc1 may be considered candidates to be included in the formulation of a multivalent and multistage vaccine against these cestodiases because of their enhancing effects on other available vaccine candidates.
Resumo:
Leishmune (R) vaccine is the first licensed vaccine against canine visceral leishmaniasis. It contains the Fucose-Mannose-ligand (FML) antigen of Leishmania donovani. The potential Leishmune (R) vaccine effect on the interruption of the transmission of the disease, was assayed by monitoring, in untreated (n = 40) and vaccinated dogs (n = 32) of a Brazilian epidemic area: the kala-azar clinical signs, the FML-seropositivity and the Leishmania parasite evidence by immunohistochemistry of skin and PCR for Leishmanial DNA of lymph node and blood samples. on month I I after vaccination, untreated controls showed: 25% of symptomatic cases, 50% of FML-seropositivity, 56.7% of lymph node PCR, 15.7% of blood PCR and 25% of immunohistochemical positive reactions. The Leishmune (R)-vaccinated dogs showed 100% of seropositivity to FML and a complete absence of clinical signs and of parasites (0%) in skin, lymph node and blood PCR samples (P < 0.01). The positivity in FML-ELISA in untreated dogs significantly correlates with the PCR in lymph node samples (p < 0.001) and with the increase in number of symptoms (p = 0.006) being strong markers of infectiousness. The absence of symptoms and of evidence of Leishmania DNA and parasites in Leishmune (R)-vaccinated animals indicates the non-infectious condition of the Leishmune (R)-vaccinated dogs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In order to assess the immunotherapeutic potential on canine visceral leishmaniasis of the Leishmune (R) vaccine, formulated with an increased adjuvant concentration (1 mg of saponin rather than 0.5 mg), 24 mongrel dogs were infected with Leishmania (L.) chagasi. The enriched-Leishmune (R) vaccine was injected on month 6, 7 and 8 after infection, when animals were seropositive and symptomatic. The control group were injected with a saline solution. Leishmune (R)-treated dogs showed significantly higher levels of anti-FML IgG antibodies (ANOVA; p < 0.0001), a higher and stable IgG2 and a decreasing IgG I response, pointing to a TH1 T cell mediated response. The vaccine had the following effects: it led to more positive delayed type hypersensitivity reactions against Leishmania lysate in vaccinated dogs (75%) than in controls (50%), to a decreased average of CD4+ Leishmania-specific lymphocytes in saline controls (32.13%) that fell outside the 95% confidence interval of the vaccinees (41.62%, CI95% 43.93-49.80) and an increased average of the clinical scores from the saline controls (17.83) that falls outside the 95% confidence interval for the Leishmune (R) immumotherapy-treated dogs (15.75, CI95% 13.97-17.53). All dogs that received the vaccine were clustered, and showed lower clinical scores and normal CD4+ counts, whereas 42% of the untreated dogs showed very diminished CD4+ and higher clinical score. The increase in clinical signs of the saline treated group was correlated with an increase in anti-FML antibodies (p < 0.0001), the parasitological evidence (p = 0.038) and a decrease in Leishinania-specific CD4+ lymphocyte proportions (p = 0.035). These results confirm the immunotherapeutic potential of the enriched-Leishmune (R) vaccine. The vaccine reduced the clinical symptoms and evidence of parasite, modulating the outcome of the infection and the dog's potential infectiosity to phlebotomines. The enriched-Leishmune (R) vaccine was subjected to a safety analysis and found to be well tolerated and safe. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O desenvolvimento de linhagens resistentes de Plasmodium falciparum tem encorajado a busca por novas drogas antimalariais. A febrifugina é uma substância natural com alta atividade contra o P. falciparum que apresenta propriedade emética e toxicidade para o fígado tal que não permitem o seu uso clínico. A busca por análogos que possam ter uma performance clínica melhor é um tema de pesquisa atual. Nosso objetivo é investigar a estrutura eletrônica teórica de uma família de derivados da febrifugina empregando cálculos semi-empíricos de orbitais moleculares, procurando por índices eletrônicos que possam ajudar a modelar novos derivados mais eficientes. Os resultados teóricos mostram que para as moléculas mais seletivas existe um agrupamento dos valores de determinados índices em intervalos bem definidos. O modelo proposto para se obter alta seletividade foi testado com sucesso.
Resumo:
The Amazon Indians Waiapi living in the West of Amapa State of Brazil, treat malaria with an inhalation of vapor obtained from leaves of Viola surinamensis. The essential oil obtained from adult and plantlet leaves was analyzed by GC/MS and 11 monoterpenes, 11 sesquiterpenes and three phenylpropanoids were identified. Plantlet essential oil caused 100% of growth inhibition after 48 h in the development of the young trophozoite to schizont stage and the sesquiterpene nerolidol (100 mu g/ml) was identified as one of the active constituents (100% of growth inhibition was obtained). In addition, examination of [(UC)-C-14]-glucose incorporation showed that activity of nerolidol is related to the inhibition of glycoprotein biosynthesis. (C) 1999 Elsevier B.V. Ireland Ltd. All rights reserved.
Saponins, IL12 and BCG adjuvant in the FML-vaccine formulation against murine visceral leishmaniasis
Resumo:
The FML antigen of Leishmania donovani, in combination with either Riedel de Haen (R), QuilA, QS21 saponins, IL12 or BCG, was used in vaccination of an outbred murine model against visceral leishmaniasis (VL). Significant and specific increases in anti-FML IgG and IgM responses were detected for all adjuvants, and in anti-FML IgG1, IgG2a and IgG2b and delayed type of hypersensitivity to L. donovani lysate (DTH), only for all saponins and IL12. The QS21-FML and QuilA-FML groups achieved the highest IgG2a response. QuilA-FML developed the strongest DTH and QS21-FML animals showed the highest serum IFN-gamma concentrations. The reduction of parasitic load in the liver in response to each FML-vaccine formulation was: 52% (P < 0.025) for BCG-FML, 73% (P < 0.005) for R-FML, 93% (P < 0.005) for QuilA-FML and 79.2% (P < 0.025) for QS21-FML treated animals, respectively. Protection was specific for R-FML and QS21-FML while the QuilA saponin treatment itself induced 69% of LDU reduction. The FML-saponin vaccines promote significant, specific and strong protective effects against murine visceral leishmaniasis. BCG-FML induced minor and non-specific protection while IL 12-FML, although enhancing the specific antibody and IDR response, failed to reduce the parasitic load of infected animals. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The recent evolution of Plasmodium falciparum is at odds with the extensive polymorphism found in most genes coding for antigens. Here, we examined the patterns and putative mechanisms of sequence diversification in the merozoite surface protein-2 (MSP-2), a major malarial repetitive surface antigen. We compared the msp-2 gene sequences from closely related clones derived from sympatric parasite isolates from Brazilian Amazonia and used microsatellite typing to examine, in these same clones, the haplotype background of chromosome 2, where msp-2 is located. We found examples of msp-2 sequence rearrangements putatively created by nonreciprocal recombinational events, such as replication slippage and gene conversion, while maintaining the chromosome haplotype. We conclude that these nonreciprocal recombination events may represent a major source of antigenic diversity in MSP-2 in P falciparum populations with low rates of classical meiotic recombination. (c) 2006 Elsevier B.V. All rights reserved.