944 resultados para Antennas, Antenna Arrays, Mutual Coupling, Decoupling Networks, Adaptive Arrays
Resumo:
Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.
Resumo:
Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.
Resumo:
For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.
Resumo:
Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.
Resumo:
Reliable data transfer is one of the most difficult tasks to be accomplished in multihop wireless networks. Traditional transport protocols like TCP face severe performance degradation over multihop networks given the noisy nature of wireless media as well as unstable connectivity conditions in place. The success of TCP in wired networks motivates its extension to wireless networks. A crucial challenge faced by TCP over these networks is how to operate smoothly with the 802.11 wireless MAC protocol which also implements a retransmission mechanism at link level in addition to short RTS/CTS control frames for avoiding collisions. These features render TCP acknowledgments (ACK) transmission quite costly. Data and ACK packets cause similar medium access overheads despite the much smaller size of the ACKs. In this paper, we further evaluate our dynamic adaptive strategy for reducing ACK-induced overhead and consequent collisions. Our approach resembles the sender side's congestion control. The receiver is self-adaptive by delaying more ACKs under nonconstrained channels and less otherwise. This improves not only throughput but also power consumption. Simulation evaluations exhibit significant improvement in several scenarios
Resumo:
We investigate the operation of optical isolators based on magneto-optics waveguide arrays beyond the coupled mode analysis. Semi-vectorial beam propagation simulations demonstrate that evanescent tail coupling and the effects of radiation are responsible for degrading the device’s performance. Our analysis suggests that these effects can be mitigated when the array size is scaled up. In addition, we propose the use of radiation blockers in order to offset some of these effects, and we show that they provide a dramatic improvement in performance. Finally, we also study the robustness of the system with respect to fabrication tolerances using the coupled mode theory. We show that small, random variations in the system’s parameters tend to average out as the number of optical guiding channels increases.
Resumo:
The generation of rhythmic electrical activity is a prominent feature of spinal cord circuits that is used for locomotion and also for circuit refinement during development. The mechanisms involved in rhythm generation in spinal cord networks are not fully understood. It is for example not known whether spinal cord rhythms are driven by pacemaker neurons and if yes, which neurons are involved in this function. We studied the mechanisms involved in rhythm generation in slice cultures from fetal rats that were grown on multielectrode arrays (MEAs). We combined multisite extracellular recordings from the MEA electrodes with intracellular patch clamp recordings from single neurons. We found that spatially restricted oscillations of activity appeared in most of the cultures spontaneously. Such activity was based on intrinsic activity in a percentage of the neurons that could activate the spinal networks through recurrent excitation. The local oscillator networks critically involved NMDA, AMPA and GABA / glycine receptors at subsequent phases of the oscillation cycle. Intrinsic spiking in individual neurons (in the absence of functional synaptic coupling) was based on persistent sodium currents. Intrinsic firing as well as persistent sodium currents were increased by 5-HT through 5-HT2 receptors. Comparing neuronal activity to muscle activity in co-cultures of spinal cord slices with muscle fibers we found that a percentage of the intrinsically spiking neurons were motoneurons. These motoneurons were electrically coupled among each other and they could drive the spinal networks through cholinergic recurrent excitation. These findings open the possibility that during development rhythmic activity in motoneurons is not only involved in circuit refinement downstream at the neuromuscular endplates but also upstream at the level of spinal cord circuits.
Resumo:
Contention-based MAC protocols follow periodic listen/sleep cycles. These protocols face the problem of virtual clustering if different unsynchronized listen/sleep schedules occur in the network, which has been shown to happen in wireless sensor networks. To interconnect these virtual clusters, border nodes maintaining all respective listen/sleep schedules are required. However, this is a waste of energy, if locally a common schedule can be determined. We propose to achieve local synchronization with a mechanism that is similar to gravitation. Clusters represent the mass, whereas synchronization messages sent by each cluster represent the gravitation force of the according cluster. Due to the mutual attraction caused by the clusters, all clusters merge finally. The exchange of synchronization messages itself is not altered by LACAS. Accordingly, LACAS introduces no overhead. Only a not yet used property of synchronization mechanisms is exploited.
Resumo:
In this paper we propose a simple model for the coupling behavior of the human spine for an inverse kinematics framework. Our spine model exhibits anatomically correct motions of the vertebrae of virtual mannequins by coupling standard swing and revolute joint models. The adjustement of the joints is made with several simple (in)equality constraints, resulting in a reduction of the solution space dimensionality for the inverse kinematics solver. By reducing the solution space dimensionality to feasible spine shapes, we prevent the inverse kinematics algorithm from providing infeasible postures for the spine.In this paper, we exploit how to apply these simple constraints to the human spine by a strict decoupling of the swing and torsion motion of the vertebrae. We demonstrate the validity of our approach on various experiments.
Resumo:
Ice sheet thickness is determined mainly by the strength of ice-bed coupling that controls holistic transitions from slow sheet flow to fast streamflow to buttressing shelf flow. Byrd Glacier has the largest ice drainage system in Antarctica and is the fastest ice stream entering Ross Ice Shelf. In 2004 two large subglacial lakes at the head of Byrd Glacier suddenly drained and increased the terminal ice velocity of Byrd Glacier from 820 m yr(-1) to 900 m yr(-1). This resulted in partial ice-bed recoupling above the lakes and partial decoupling along Byrd Glacier. An attempt to quantify this behavior is made using flowband and flowline models in which the controlling variable for ice height above the bed is the floating fraction phi of ice along the flowband and flowline. Changes in phi before and after drainage are obtained from available data, but more reliable data in the map plane are required before Byrd Glacier can be modeled adequately. A holistic sliding velocity is derived that depends on phi, with contributions from ice shearing over coupled beds and ice stretching over uncoupled beds, as is done in state-of-the-art sliding theories.
Resumo:
Energy is of primary concern in wireless sensor networks (WSNs). Low power transmission makes the wireless links unreliable, which leads to frequent topology changes. Resulting packet retransmissions aggravate the energy consumption. Beaconless routing approaches, such as opportunistic routing (OR) choose packet forwarders after data transmissions, and are promising to support dynamic features of WSNs. This paper proposes SCAD - Sensor Context-aware Adaptive Duty-cycled beaconless OR for WSNs. SCAD is a cross-layer routing solution and it brings the concept of beaconless OR into WSNs. SCAD selects packet forwarders based on multiple types of network contexts. To achieve a balance between performance and energy efficiency, SCAD adapts duty-cycles of sensors based on real-time traffic loads and energy drain rates. We implemented SCAD in TinyOS running on top of Tmote Sky sensor motes. Real-world evaluations show that SCAD outperforms other protocols in terms of both throughput and network lifetime.
Resumo:
There have been numerous attempts to reveal the neurobiological basis of schizophrenia spectrum disorders. Results however, remain as heterogeneous as the schizophrenia spectrum disorders itself. Therefore, one aim of this thesis was to divide patients affected by this disorder into subgroups in order to homogenize the results of future studies. In a first study it is suggested that psychopathological rating scales should focus on symptoms-clusters that may have a common neurophysiological background. The here presented Bern Psychopathology Scale (BPS) proposes that alterations in three wellknown brain systems (motor, language, and affective) are largely leading to the communication failures observable on a behavioral level, but also - as repeatedly hypothesized - to dysconnectivity within and between brain systems in schizophrenia spectrum disorders. The external validity of the motor domain in the BPS was tested against the objective measure of 24 hours wrist actigraphy, in a second study. The subjective, the quantitative, as well as the global rating of the degree of motor disorders in this patient group showed significant correlations to the acquired motor activity. This result confirmed in a first step the practicability of the motor domain of the BPS, but needs further validation regarding pathological brain alterations. Finally, in a third study (independent from the two other studies), two cerebral Resting State Networks frequently altered in schizophrenia were investigated for the first time using simultaneous EEG/fMRI: The well-known default mode network and the left working memory network. Besides the changes in these fMRI-based networks, there are well-documented findings that patients exhibit alterations in EEG spectra compared to healthy controls. However, only through the multimodal approach it was possible to discover that patients with schizophrenia spectrum disorders have a slower driving frequency of the Resting State Networks compared to the matched healthy controls. Such a dysfunctional coupling between neuronal frequency and functional brain organization could explain in a uni- or multifactorial way (dysfunctional cross-frequency coupling, maturational effects, vigilance fluctuations, task-related suppression), how the typical psychotic symptoms might occur. To conclude, the major contributions presented in this thesis were on one hand the development of a psychopathology rating scale that is based on the assumption of dysfunctional brain networks, as well as the new evidence of a dysfunctional triggering frequency of Resting State Networks from the simultaneous EEG/fMRI study in patients affected by a schizophrenia spectrum disorder.
Resumo:
The field of molecule-based magnets is a relatively new branch of chemistry, which involves the design and study of molecular compounds that exhibit a spontaneous magnetic ordering below a critical temperature, Tc. One major goal involves the design of materials with tuneable Tc's for specific applications in memory storage devices. Molecule-based magnets with high magnetic ordering temperatures have recently been obtained from bimetallic and mixed-valence transition metal μ-cyanide complexes of the Prussian blue family. Since the μ-cyanide linkages permit an interaction between paramagnetic metal ions, cyanometalate building blocks have found useful applications in the field of molecule-based magnets. Our work involves the use of octacyanometalate building blocks for the self-assembly of two new classes of magnetic materials namely, high-spin molecular clusters which exhibit both ferromagnetic intra- and intercluster coupling, and specific extended network topologies which show long-range ferromagnetic ordering.
Resumo:
Low quality of wireless links leads to perpetual transmission failures in lossy wireless environments. To mitigate this problem, opportunistic routing (OR) has been proposed to improve the throughput of wireless multihop ad-hoc networks by taking advantage of the broadcast nature of wireless channels. However, OR can not be directly applied to wireless sensor networks (WSNs) due to some intrinsic design features of WSNs. In this paper, we present a new OR solution for WSNs with suitable adaptations to their characteristics. Our protocol, called SCAD-Sensor Context-aware Adaptive Duty-cycled beaconless opportunistic routing protocol is a cross-layer routing approach and it selects packet forwarders based on multiple sensor context information. To reach a balance between performance and energy-efficiency, SCAD adapts the duty-cycles of sensors according to real-time traffic loads and energy drain rates. We compare SCAD against other protocols through extensive simulations. Evaluation results show that SCAD outperforms other protocols in highly dynamic scenarios.