896 resultados para Android,Peer to Peer,Wifi,Mesh Network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preservation of rivers and water resources is crucial in most environmental policies and many efforts are made to assess water quality. Environmental monitoring of large river networks are based on measurement stations. Compared to the total length of river networks, their number is often limited and there is a need to extend environmental variables that are measured locally to the whole river network. The objective of this paper is to propose several relevant geostatistical models for river modeling. These models use river distance and are based on two contrasting assumptions about dependency along a river network. Inference using maximum likelihood, model selection criterion and prediction by kriging are then developed. We illustrate our approach on two variables that differ by their distributional and spatial characteristics: summer water temperature and nitrate concentration. The data come from 141 to 187 monitoring stations in a network on a large river located in the Northeast of France that is more than 5000 km long and includes Meuse and Moselle basins. We first evaluated different spatial models and then gave prediction maps and error variance maps for the whole stream network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Childhood protection is undergoing several changes. Our study aimed to outline the complex network of meanings which includes adoption as well as institutional and family foster care, by combining theory, research and practice. We investigated various contexts and protagonists: judicial system, foster institutions, birth parents, foster and adoptive parents, and families and their children. Diverse data collection procedures were used: socio-demographic investigations, case-studies, follow-ups, interviews, analysis of foster institutions and legal court documents. Results pointed to "invisibility" of birth family, frequent child (re)abuse, failures in the network of protection, meanings of "healthy family" and role of attachment concepts. Implications for social policies and social practices are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the influence of fat type in the structure of ice cream, during its production by means of rheo-optical analysis. Fat plays an important part in the ice cream structure formation. It's responsible for the air stabilization, flavor release, texture and melting properties. The objective of this study was to use a rheological method to predict the fat network formation in ice cream with three types of fats (hydrogenated, low trans and palm fat). The three formulations were produced using the same methodology and ratio of ingredients. Rheo-optical measurements were taken before and after the ageing process, and the maximum compression force, overrun and melting profile were calculated in the finished product. The rheological analysis showed a better response from the ageing process from the hydrogenated fat, followed by the low trans fat. The formulation with palm fat showed greater differences between the three, where through the rheological tests a weaker destabilization of the fat globule membrane by the emulsifier was suggested. The overrun, texture measurements and meltdown profile has shown the distinction on the structure formation by the hydrogenated fat from the other fats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabasi-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern GPUs are well suited for intensive computational tasks and massive parallel computation. Sparse matrix multiplication and linear triangular solver are the most important and heavily used kernels in scientific computation, and several challenges in developing a high performance kernel with the two modules is investigated. The main interest it to solve linear systems derived from the elliptic equations with triangular elements. The resulting linear system has a symmetric positive definite matrix. The sparse matrix is stored in the compressed sparse row (CSR) format. It is proposed a CUDA algorithm to execute the matrix vector multiplication using directly the CSR format. A dependence tree algorithm is used to determine which variables the linear triangular solver can determine in parallel. To increase the number of the parallel threads, a coloring graph algorithm is implemented to reorder the mesh numbering in a pre-processing phase. The proposed method is compared with parallel and serial available libraries. The results show that the proposed method improves the computation cost of the matrix vector multiplication. The pre-processing associated with the triangular solver needs to be executed just once in the proposed method. The conjugate gradient method was implemented and showed similar convergence rate for all the compared methods. The proposed method showed significant smaller execution time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES] El presente trabajo ofrece un análisis preliminar de la red fluvial con antecedencia terciaria del sureste gallego. Las observaciones geomorfológicas de campo se centran en la cartografía de terrazas erosivas, canales abandonados, meandros colgados, codos de captura y redes anómalas. Para su interpretación se confrontaron con los thalwegs de los cursos principales y las fracturas alpinas cartografiadas por otros autores. Se propone una cronología para los procesos fluviales identificados; cronología que apunta una antigüedad de la red fluvial mayor a la estimada hasta el momento. De las siete tendencias identificadas, tres presentan una entidad regional (ENE-WSW, NE-SW, N-S), y cuatro local (NW-SE, SW-NE, SE-NW, S-N). Se confirma el carácter principal de la paleorred ENE-WSW (caracterizada por el río Sil) y como hipótesis se propone, para la Sierra de Queixa-San Mamede, el carácter de paleorrelieve positivo de herencia mesozoica. Este relieve habría sufrido varios procesos de levantamiento isostático y también tectónico durante la Orogenia Alpina. Estos levantamientos habrían provocado la superposición de capturas en las estribaciones surorientales de la Sierra de Queixa-San Mamede.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES] La irrupción actual de los teléfonos inteligentes (smartphones) equipados con diversos sensores y herramientas nativas, propicia la posibilidad de crear una gran gama de aplicaciones para mejorar la vida de personas con discapacidades. Con este proyecto se pretende cubrir estos objetivos: explorar las distintas posibilidades que ofrece la plataforma Android para implementar métodos de interacción hombre-máquina adaptados a personas con discapacidad visual. Identificar las problemáticas que afectan a las personas con discapacidad visual en el ámbito sociosanitario. Desarrollar una aplicación de carácter social que contribuya a mejorar la calidad de vida de estas personas. Como resultado del trabajo, se ha desarrollado una aplicación software llamada LeeMed, que consiste en una app para la plataforma Android, dirigida a personas con discapacidad visual, para la consulta de prospectos de medicamentos a través de múltiples interfaces humanas. El trabajo ha abordado tres tipos de interfaces: la oral (órdenes de voz), la gestual y la convencional de menús y opciones (GUI)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In fluid dynamics research, pressure measurements are of great importance to define the flow field acting on aerodynamic surfaces. In fact the experimental approach is fundamental to avoid the complexity of the mathematical models for predicting the fluid phenomena. It’s important to note that, using in-situ sensor to monitor pressure on large domains with highly unsteady flows, several problems are encountered working with the classical techniques due to the transducer cost, the intrusiveness, the time response and the operating range. An interesting approach for satisfying the previously reported sensor requirements is to implement a sensor network capable of acquiring pressure data on aerodynamic surface using a wireless communication system able to collect the pressure data with the lowest environmental–invasion level possible. In this thesis a wireless sensor network for fluid fields pressure has been designed, built and tested. To develop the system, a capacitive pressure sensor, based on polymeric membrane, and read out circuitry, based on microcontroller, have been designed, built and tested. The wireless communication has been performed using the Zensys Z-WAVE platform, and network and data management have been implemented. Finally, the full embedded system with antenna has been created. As a proof of concept, the monitoring of pressure on the top of the mainsail in a sailboat has been chosen as working example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project points out a brief overview of several concepts, as Renewable Energy Resources, Distributed Energy Resources, Distributed Generation, and describes the general architecture of an electrical microgrid, isolated or connected to the Medium Voltage Network. Moreover, the project focuses on a project carried out by GRECDH Department in collaboration with CITCEA Department, both belonging to Universitat Politécnica de Catalunya: it concerns isolated microgrids employing renewable energy resources in two communities in northern Peru. Several solutions found using optimization software regarding different generation systems (wind and photovoltaic) and different energy demand scenarios are commented and analyzed from an electrical point of view. Furthermore, there are some proposals to improve microgrid performances, in particular to increase voltage values for each load connected to the microgrid. The extra costs required by the proposed solutions are calculated and their effect on the total microgrid cost are taken into account; finally there are some considerations about the impact the project has on population and on people's daily life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This work presents a novel approach to solve a two dimensional problem by using an adaptive finite element approach. The most common strategy to deal with nested adaptivity is to generate a mesh that represents the geometry and the input parameters correctly, and to refine this mesh locally to obtain the most accurate solution. As opposed to this approach, the authors propose a technique using independent meshes : geometry, input data and the unknowns. Each particular mesh is obtained by a local nested refinement of the same coarse mesh at the parametric space…

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa de doctorado: Ingeniería de Telecomunicación Avanzada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con il termine Smart Grid si intende una rete urbana capillare che trasporta energia, informazione e controllo, composta da dispositivi e sistemi altamente distribuiti e cooperanti. Essa deve essere in grado di orchestrare in modo intelligente le azioni di tutti gli utenti e dispositivi connessi al fine di distribuire energia in modo sicuro, efficiente e sostenibile. Questo connubio fra ICT ed Energia viene comunemente identificato anche con il termine Smart Metering, o Internet of Energy. La crescente domanda di energia e l’assoluta necessità di ridurre gli impatti ambientali (pacchetto clima energia 20-20-20 [9]), ha creato una convergenza di interessi scientifici, industriali e politici sul tema di come le tecnologie ICT possano abilitare un processo di trasformazione strutturale di ogni fase del ciclo energetico: dalla generazione fino all’accumulo, al trasporto, alla distribuzione, alla vendita e, non ultimo, il consumo intelligente di energia. Tutti i dispositivi connessi, diventeranno parte attiva di un ciclo di controllo esteso alle grandi centrali di generazione così come ai comportamenti dei singoli utenti, agli elettrodomestici di casa, alle auto elettriche e ai sistemi di micro-generazione diffusa. La Smart Grid dovrà quindi appoggiarsi su una rete capillare di comunicazione che fornisca non solo la connettività fra i dispositivi, ma anche l’abilitazione di nuovi servizi energetici a valore aggiunto. In questo scenario, la strategia di comunicazione sviluppata per lo Smart Metering dell’energia elettrica, può essere estesa anche a tutte le applicazioni di telerilevamento e gestione, come nuovi contatori dell’acqua e del gas intelligenti, gestione dei rifiuti, monitoraggio dell’inquinamento dell’aria, monitoraggio del rumore acustico stradale, controllo continuo del sistema di illuminazione pubblico, sistemi di gestione dei parcheggi cittadini, monitoraggio del servizio di noleggio delle biciclette, ecc. Tutto ciò si prevede possa contribuire alla progettazione di un unico sistema connesso, dove differenti dispositivi eterogenei saranno collegati per mettere a disposizione un’adeguata struttura a basso costo e bassa potenza, chiamata Metropolitan Mesh Machine Network (M3N) o ancora meglio Smart City. Le Smart Cities dovranno a loro volta diventare reti attive, in grado di reagire agli eventi esterni e perseguire obiettivi di efficienza in modo autonomo e in tempo reale. Anche per esse è richiesta l’introduzione di smart meter, connessi ad una rete di comunicazione broadband e in grado di gestire un flusso di monitoraggio e controllo bi-direzionale esteso a tutti gli apparati connessi alla rete elettrica (ma anche del gas, acqua, ecc). La M3N, è un’estensione delle wireless mesh network (WMN). Esse rappresentano una tecnologia fortemente attesa che giocherà un ruolo molto importante nelle futura generazione di reti wireless. Una WMN è una rete di telecomunicazione basata su nodi radio in cui ci sono minimo due percorsi che mettono in comunicazione due nodi. E’ un tipo di rete robusta e che offre ridondanza. Quando un nodo non è più attivo, tutti i rimanenti possono ancora comunicare tra di loro, direttamente o passando da uno o più nodi intermedi. Le WMN rappresentano una tipologia di rete fondamentale nel continuo sviluppo delle reti radio che denota la divergenza dalle tradizionali reti wireless basate su un sistema centralizzato come le reti cellulari e le WLAN (Wireless Local Area Network). Analogamente a quanto successo per le reti di telecomunicazione fisse, in cui si è passati, dalla fine degli anni ’60 ai primi anni ’70, ad introdurre schemi di rete distribuite che si sono evolute e man mano preso campo come Internet, le M3N promettono di essere il futuro delle reti wireless “smart”. Il primo vantaggio che una WMN presenta è inerente alla tolleranza alla caduta di nodi della rete stessa. Diversamente da quanto accade per una rete cellulare, in cui la caduta di una Base Station significa la perdita di servizio per una vasta area geografica, le WMN sono provviste di un’alta tolleranza alle cadute, anche quando i nodi a cadere sono più di uno. L'obbiettivo di questa tesi è quello di valutare le prestazioni, in termini di connettività e throughput, di una M3N al variare di alcuni parametri, quali l’architettura di rete, le tecnologie utilizzabili (quindi al variare della potenza, frequenza, Building Penetration Loss…ecc) e per diverse condizioni di connettività (cioè per diversi casi di propagazione e densità abitativa). Attraverso l’uso di Matlab, è stato quindi progettato e sviluppato un simulatore, che riproduce le caratteristiche di una generica M3N e funge da strumento di valutazione delle performance della stessa. Il lavoro è stato svolto presso i laboratori del DEIS di Villa Grifone in collaborazione con la FUB (Fondazione Ugo Bordoni).