987 resultados para ARTIFICIAL LESION FORMATION
Resumo:
In this paper we consider a decentralized supply chain formation problem for linear multi-echelon supply chains when the managers of the individual echelons are autonomous, rational, and intelligent. At each echelon, there is a choice of service providers and the specific problem we solve is that of determining a cost-optimal mix of service providers so as to achieve a desired level of end-to-end delivery performance. The problem can be broken up into two sub-problems following a mechanism design approach: (1) Design of an incentive compatible mechanism to elicit the true cost functions from the echelon managers; (2) Formulation and solution of an appropriate optimization problem using the true cost information. In this paper we propose a novel Bayesian incentive compatible mechanism for eliciting the true cost functions. This improves upon existing solutions in the literature which are all based on the classical Vickrey-Clarke-Groves mechanisms, requiring significant incentives to be paid to the echelon managers for achieving dominant strategy incentive compatibility. The proposed solution, which we call SCF-BIC (Supply Chain Formation with Bayesian Incentive Compatibility), significantly reduces the cost of supply chain formation. We illustrate the efficacy of the proposed methodology using the example of a three echelon manufacturing supply chain.
Resumo:
In this paper we address the problem of forming procurement networks for items with value adding stages that are linearly arranged. Formation of such procurement networks involves a bottom-up assembly of complex production, assembly, and exchange relationships through supplier selection and contracting decisions. Recent research in supply chain management has emphasized that such decisions need to take into account the fact that suppliers and buyers are intelligent and rational agents who act strategically. In this paper, we view the problem of Procurement Network Formation (PNF) for multiple units of a single item as a cooperative game where agents cooperate to form a surplus maximizing procurement network and then share the surplus in a fair manner. We study the implications of using the Shapley value as a solution concept for forming such procurement networks. We also present a protocol, based on the extensive form game realization of the Shapley value, for forming these networks.
Resumo:
Chloromethylfurfural (CMF), a valuable intermediate for the production of chemicals and fuel, can be derived in high yields from the cellulose component of biomass. This study examined the effect of sugar cane bagasse components and biomass architecture on CMF/bio-oil yield using a HCl/dichloroethane biphasic system. The type of pretreatment affected bio-oil yield, as the CMF yield increased with increasing glucan content. CMF yield reached 81.9% with bagasse pretreated by acidified aqueous ionic liquid, which had a glucan content of 81.6%. The lignin content of the biomass was found to significantly reduce CMF yield, which was only 62.3% with acid-catalysed steam exploded sample having a lignin content of 29.6%. The change of CMF yield may be associated with fibre surface changes as a result of pretreatment. The hemicellulose content also impacted negatively on CMF yield. Storage of the bio-oil in chlorinated solvents prevented CMF degradation.
Resumo:
The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.
Resumo:
Examples of 3D cadmium thiosulfate based inorganic-organic hybrid compounds have been shown to be active photocatalysts using sunlight.
Resumo:
Heart failure is a common and highly challenging medical disorder. The progressive increase of elderly population is expected to further reflect in heart failure incidence. Recent progress in cell transplantation therapy has provided a conceptual alternative for treatment of heart failure. Despite improved medical treatment and operative possibilities, end-stage coronary artery disease present a great medical challenge. It has been estimated that therapeutic angiogenesis would be the next major advance in the treatment of ischaemic heart disease. Gene transfer to augment neovascularization could be beneficial for such patients. We employed a porcine model to evaluate the angiogenic effect of vascular endothelial growth factor (VEGF)-C gene transfer. Ameroid-generated myocardial ischemia was produced and adenovirus encoding (ad)VEGF-C or β-galactosidase (LacZ) gene therapy was given intramyocardially during progressive coronary stenosis. Angiography, positron emission tomography (PET), single photon emission computed tomography (SPECT) and histology evidenced beneficial affects of the adVEGF-C gene transfer compared to adLacZ. The myocardial deterioration during progressive coronary stenosis seen in the control group was restrained in the treatment group. We observed an uneven occlusion rate of the coronary vessels with Ameroid constrictor. We developed a simple methodological improvement of Ameroid model by ligating of the Ameroid–stenosed coronary vessel. Improvement of the model was seen by a more reliable occlusion rate of the vessel concerned and a formation of a rather constant myocardial infarction. We assessed the spontaneous healing of the left ventricle (LV) in this new model by SPECT, PET, MRI, and angiography. Significant spontaneous improvement of myocardial perfusion and function was seen as well as diminishment of scar volume. Histologically more microvessels were seen in the border area of the lesion. Double staining of the myocytes in mitosis indicated more cardiomyocyte regeneration at the remote area of the lesion. The potential of autologous myoblast transplantation after ischaemia and infarction of porcine heart was evaluated. After ligation of stenosed coronary artery, autologous myoblast transplantation or control medium was directly injected into the myocardium at the lesion area. Assessed by MRI, improvement of diastolic function was seen in the myoblast-transplanted animals, but not in the control animals. Systolic function remained unchanged in both groups.
Resumo:
The formation of an ω-Al7Cu2Fe phase during laser cladding of quasicrystal-forming Al65Cu23.3Fe11.7 alloy on a pure aluminium substrate is reported. This phase is found to nucleate at the periphery of primary icosahedral-phase particles. A large number of ω-phase particles form an envelope around the icosahedral phase. On the outer side, they form an interface with an agr-Al solid solution. Detailed transmission electron microscopic observations show that the ω phase exhibits an orientation relationship with the icosahedral phase. Analysis of experimental results suggests that the ω phase forms by precipitation on an icosahedral phase by heterogeneous nucleation and grows into the aluminium-rich melt until supersaturation is exhausted. The microstructural observations are explained in terms of available models of phase transformations.
Resumo:
Based on the measurements of Alcock and Zador, Grundy et al. estimated an uncertainty of the order of +/- 5 kJ mol(-1) for the standard Gibbs energy of formation of MnO in a recent assessment. Since the evaluation of thermodynamic data for the higher oxides Mn3O4, Mn2O3, and MnO2 depends on values for MnO, a redetermination of its Gibbs energy of formation was undertaken in the temperature range from 875 to 1300 K using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the solid electrolyte and Fe + Fe1-delta O as the reference electrode. The cell can be presented as Pt, Mn + MnO/YDT/Fe + Fe1+delta O, Pt Since the metals Fe and Mn undergo phase transitions in the temperature range of measurement, the reversible emf of the cell is represented by the three linear segments. Combining the emf with the oxygen potential for the reference electrode, the standard Gibbs energy of formation of MnO from alpha-Mn and gaseous diatomic oxygen in the temperature range from 875 to 980 K is obtained as: Delta G(f)(o)/Jmol(-1)(+/- 250) = -385624 + 73.071T From 980 to 1300 K the Gibbs energy of formation of MnO from beta-Mn and oxygen gas is given by: Delta G(f)(o)/Jmol(-1)(+/- 250) = -387850 + 75.36T The new data are in excellent agreement with the earlier measurements of Alcock and Zador. Grundy et al. incorrectly analyzed the data of Alcock and Zador showing relatively large difference (+/- 5 kJ mol(-1)) in Gibbs energies of MnO from their two cells with Fe + Fe1-delta O and Ni + NiO as reference electrodes. Thermodynamic data for MnO is reassessed in the light of the new measurements. A table of refined thermodynamic data for MnO from 298.15 to 2000 K is presented.
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional acts of “occupation” and understandings of the domestic environment. As a space of escalating technological control, the modern domestic interior offered new potential to re-define the meaning and means of habitation. This shift is clearly expressed in the transformation of electric lighting technology and applications for the modern interior in the mid-twentieth century. Addressing these issues, this paper examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson’s New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House (both 1949), this study illustrates how Johnson employed artificial light to control the visual environment of the estate as well as to aestheticize the performance of domestic space. Looking closely at the use of artificial light to create emotive effects as well as to intensify the experience of occupation, this revisiting of the iconic Glass House and lesser-known Guest House provides a more complex understanding of Johnson’s work and the means with which he inhabited his own architecture. Calling attention to the importance of Johnson serving as both architect and client, and his particular interest in exploring the new potential of architectural lighting in this period, this paper investigates Johnson’s use of electric light to support architectural narratives, maintain visual order and control, and to suit the nuanced desires of domestic occupation.
Resumo:
An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.
Resumo:
Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.
Resumo:
It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements. As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured. The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work. Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels. This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.
Resumo:
Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.