986 resultados para 04090210 CTD-60
Resumo:
During the reaction of reduced C-60 with benzyl bromide in benzonitrile, a novel cis-1 C-60 adduct, 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (1), Was obtained rather than the expected product of 1,4-dibenzyl C-60. The structure of compound 1 was analyzed by X-ray single-crystal diffraction, identifying the presence of a five-membered heterocycle at a [5,6] bond of C-60. One of the heteroatoms is assigned as a nitrogen atom; however, the identity of the other heteroatom cannot be determined unambiguously by crystallography due to similarity between the nitrogen and oxygen atoms.
Resumo:
Heterogeneous electrocatalytic reduction of hydrogen peroxide (H2O2) by C-60 is reported for the first time. C-60 is embedded in tetra octyl ammonium bromide (TOAB) film and is characterized by scanning electron microscopy and cyclic voltammetry. Electrocatalytic studies show that the trianion of C-60 mediates the electrocatalytic reduction of H2O2 in aqueous solution containing 0.1 M KCl. Application of such film modified electrode as an amperometric sensor for H2O2 determination is also examined.
Resumo:
The C-60 dianion is used to reduce tetrachloroauric acid (HAuCl4) for the first time; three-dimensional C-60 bound gold (Au-C-60) nanoclusters are obtained from C-60-directed self-assembly of gold nanoparticles due to the strong affinities of Au-C-60 and C-60-C-60. The process was monitored in situ by UV-vis-NIR spectroscopy. The resulting Au-C-60 nanoclusters were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and FT-IR and Raman spectroscopies.
Resumo:
中性的C60是很强的缺电子体,主要和亲核试剂进行化学反应。与之不同的是C60经还原生成负离子后,由缺电子变为富含电子,具有很强的亲核性质,可与亲电试剂进行反应。由于这种电子结构的变化,C60负离子进行的反应从机理至产物均有可能与中性富勒烯不同,从而丰富了富勒烯的反应方式和富勒烯产物的类型。结合我们的工作综述了C60负离子化学的研究进展,对丰富富勒烯化学、扩展富勒烯衍生物的种类及制备方法具有一定意义。
Resumo:
Efficient inverted top-emitting organic light-emitting diodes with aluminum (Al) as both the cathode and semitransparent anode are investigated. It is found that introduction of the ultrathin molybdenum trioxide (MoO3)/fullerene (C-60) bilayer structure between the low work function Al top anode and the hole-transporting layer dramatically enhances the device performance as compared to the devices with sole MoO3 or C-60 buffer layer. The ultraviolet photoemission spectroscopy and x-ray photoelectron spectroscopy indicate that the hole injection barrier between Al anode and hole-transporting layer is effectively reduced via strong dipole effect at Al/MoO3/C-60 interfaces with its direction pointing from Al to C-60.
Resumo:
In this paper, we report the fabrication of permeable metal-base organic transistors based on N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/C-60 heterojunction as both emitter and collector. By applying different polarities of voltage bias to the collector and the base, and input current to the emitter, the ambipolar behavior can be observed. The device demonstrates excellent common-base characteristics both in P-type and N-type modes with common-base current gains of 0.998 and 0.999, respectively.
Resumo:
The electrochemical properties of a series of structurally related fullerooxazoles, [6,6] cyclic phenylimidate C-60 (1), 1,2-benzal-3-N-4-O-cyclic phenylimidate C-60 (2), and 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (3), are described, and the spectroscopic characterizations of their anionic species are reported. The results show that compounds I and 2 undergo retro-cycloaddition reactions that lead to the formation of C-60 and C61HPh, respectively, upon two-electron-transfer reduction. However, compound 3 demonstrates much more electrochemical stability as no retro-cycloaddition reaction occurs under similar conditions. Natural bond orbital (NBO) calculations on charge distribution show there is no significant difference among the dianions of 1, 2, and 3, indicating that the electrochemical stability of 3 is unlikely to be caused by the charge distribution difference of the dianions of three compounds. Examination on the crystal structure of compound 3 reveals close contacts of the C-H group with the heteroatoms (N and O) of cyclic phenylimidate, suggesting the existence of C-H center dot center dot center dot X (X = N, O) intramolecular hydrogen bonding among the addends, which is further confirmed by NBO analysis.
Resumo:
Water-soluble supramolecular inclusion complexes of alpha-, beta-, and gamma-cyclodextrin-bicapped C-60 (CD/C-60) have been investigated for their photoinduced DNA cleavage activities, with the aim to assess the potential health risks of this class of compounds and to understand the effect of host cyclodextrins having different cavity dimensions. Factors such as incubation temperature, irradiation time, and concentration of NADH or CDs/C-60 supramolecular inclusion complexes have been examined. The results show that alpha-, beta-, and gamma-CDs/C-60 are all able to cleave double-stranded DNA under visible light irradiation in the presence of NADH. However, a difference in the photoinduced DNA cleavage efficiency is observed, where the cleavage efficiency increases in the order of alpha-, beta-, and gamma-CD/C-60. The difference is attributed to the different aggregation behavior of the inclusion complexes in aqueous solution, which is correlated to the cavity dimension of the host cyclodextrin molecules.
Resumo:
Effective enhancement of electrochermluminescence (ECL) of peroxydisulfate on a C-60/didodecyldimethyl ammonium bromide (C-60/DDAB) film coated glassy carbon electrode (GCE) surface is reported in this paper. The C60/DDAB film gave lower cathodic current in the presence of peroxydisulfate than that from a bare GCE. To our surprise, electrochemiluminescent intensity from peroxydisulfate reduction was effectively enhanced on the C60/DDAB film, which was 50 times and 250 times higher than those from a DDAB film coated and bare GCE, respectively. Moreover, the ECL onset potential on the C60/DDAB film was about -0.9 V, which positively shifted 200 mV compared with that from the bare GCE. Dissolved oxygen and the applied potential also affected the electrochemiluminescent intensity. The presence of oxygen decreased the intensity, and the intensity reached maximum at the applied potential of -1.7 V. The unique property will greatly enrich ECL studies and applications based on fullerenes.
Resumo:
A new vinyl acyl azide monomer, 4-(azidocarbonyl) phenyl methacrylate, has been synthesized and characterized by NMR and FTIR spectroscopy. The thermal stability of the new monomer has been investigated with FTIR and thermal gravimetry/differential thermal analysis (TG/DTA), and the monomer has been demonstrated to be stable below 50 degrees C in the solid state. The copolymerizations of the new monomer with methyl acrylate have been carried out at room temperature under Co-60 gamma-ray irradiation in the presence of benzyl 1-H-imidazole-1-carbodithioate. The results show that the polymerizations bear all the characteristics of controlled/living free-radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow (< 1.20), and a linear relationship existing between In([M](0)/[M]) and the polymerization time. The data from H-1 NMR and FTIR confirm that no change in the acyl azide groups has occurred in the polymerization process and that acyl azide copolymers have been obtained. The thermal stability of the polymers has also been investigated with TG/DTA and FTIR.
Resumo:
The supramolecular self-assembled monolayers (SAMs) of C-60 by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C-60 monoanion. The results indicate that monoanionic C-60 plays a crucial role in the formation of the C-60-containing self-assembled monolayers. The generation of C-60 monoanion and the formation process of C-60 SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C-60 SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C-60 by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C-60. The new C-60 SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C-60 on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C-60 over the thiolated beta-CD SAMs.
Resumo:
A reinvestigation of the reaction between C-60(2-) and benzyl bromide in benzonitrile containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) has shown that there are more reaction products than previously reported. Use of a silica rather than a "Buckyclutcher I" column for HPLC purification led to isolation of two previously unattained products in the reaction mixture, one of which was identified as 1,2-(PhCH2)(2)C-60 by UV-vis and NMR. The earlier incorrectly assigned 1,2-(PhCH2)(2)C-60 was identified as the methanofullerene C61HPh by X-ray single-crystal diffraction. The electrochemistry of genuine 1,2-(PhCH2)(2)C-60 shows that its first reduction potential in PhCN containing 0.1 M TBAP is cathodically shifted by 100 mV with respect to E-1/2 for reduction of 1,4-(PhCH2)(2)C-60, indicating that the addition pattern significantly affects the electrochemistry of derivatized C-60. Visible and near-IR spectra of the monoanion and dianion of 1,2-(PhCH2)(2)C-60 are also reported.
Resumo:
The homogeneous electrocatalytic reduction of 1,2-diiodoethane by anions of the supramolecular complex of (beta-CD)(2)/C-60 in DMF solution is reported. The results show that the trianion of (beta-CD)(2)/C-60 exhibits electrocatalytic behavior towards the reduction of 1,2-diiodoethane, whereas the diani on is unable to reduce the diiodoethane. The second-order catalytic rate constant in DMF solution was determined to be 3.1 x 10(5) M-1 s(-1) by analysis of voltammetric responses under pseudo-first-order conditions with respect to (beta-CD)(2)/C-60. The results suggest that the host beta-cyclodextrin molecules have little effect on the electrocatalytic ability of the encapsulated C-60 toward organic halides.
Resumo:
Herein we report the spectroscopic, electrochemical, TEM and DLS characterizations Of C-60 supramolecular inclusion complexes with alpha-, beta- and gamma-cyclodextrins prepared using anionic C-60. The results indicate that the cyclodextrin itself has little effect on the encapsulated C-60 or on the properties of the inclusion complex. Instead, the cyclodextrin has a significant influence on the aggregation behavior of individual complex in aqueous solution, which in turn affects the property of the supramolecular complex of cyclodextrin and C-60 greatly, As the cavity dimension of cyclodextrin becomes smaller as it changes from gamma-CD to beta-CD, and finally to alpha-CD, it is observed that more aggregation occurs for the corresponding inclusion complex in aqueous solution.