986 resultados para 02170530 TM-4
Resumo:
The two minerals borickyite and delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O have the same formula. Are the minerals identical or different? The minerals borickyite and delvauxite have been characterised by Raman spectroscopy. The minerals are related to the minerals diadochite and destinezite. Both minerals are amorphous. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The minerals are often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables an assessment of the molecular structure of borickyite and delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths. The two minerals show differing spectra and must be considered as different minerals.
Resumo:
This report discusses findings of a case study into "CADD, BIM and IPD" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. This case study investigated the evolution that has taken place in the Queensland Department of Public Works Division of Project Services during the last 20 years from: the initial implementation of computer aided design and documentation(CADD); to the experimentation with building information modelling (BIM) from the mid 2000’s; embedding integrated practice (IP); to current steps towards integrated project delivery (IPD) with the integration of contractors in the design/delivery process. This case study should be read in conjunction with Part 1 of this suite of reports.
Resumo:
A new spatial logic encompassing redefined concepts of time and place, space and distance, requires a comprehensive shift in the approach to designing workplace environments for today’s adaptive, collaborative organizations operating in a dynamic business world. Together with substantial economic and cultural shifts and an increased emphasis on lifestyle considerations, the advances in information technology have prompted a radical re-ordering of organizational relationships and the associated structures, processes, and places of doing business. Within the duality of space and an augmentation of the traditional notions of place, organizational and institutional structures pose new challenges for the design professions. The literature reveals that there has always been a mono-organizational focus in relation to workplace design strategies and the burgeoning trend towards inter-organizational collaboration, enabled the identification of a gap in the knowledge relative to workplace design. The NetWorkPlaceTM© constitutes a multi-dimensional concept having the capacity to deal with the fluidity and ambiguity characteristic of the network context, as both a topic of research and the way of going about it.
Resumo:
In the asymmetric unit of the title co-crystal, C12H14N4O2S . C7H5NO4 there are two independent but conformationally similar heterodimers, which are formed through intermolecular N-H...O(carboxy) and carboxyl O-H...N hydrogen-bond pairs, giving a cyclic motif [graph set R2/2(8)]. The dihedral angles between the rings in the sulfonamide molecules are 78.77(8) and 82.33(9)deg. while the dihedral angles between the ring and the CO2H group in the acids are 2.19(9) and 7.02(10)deg. A two-dimensional structure parallel to the ab plane is generated from the heterodimer units through hydrogen-bonding associations between NH2 and sulfone groups. Between neighbouring two-dimensional arrays there are two types of aromatic pi-pi stacking interactions involving either one of the pyrimidine rings and a 4-nitrobenzoic acid molecule [minimum ring centroid separation = 3.5886(9)A] or two acid molecules [minimum ring centroid separation = 3.7236(10)A].
Resumo:
The molecular structure of the mixed anion mineral Clinotyrolite Ca2Cu9[(As,S)O4]4(OH)10•10(H2O) has been determined by the combination of Raman and infrared spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. Estimates of hydrogen bond distances were made using a Libowitzky function and both short and long hydrogen bonds are identified. Two intense Raman bands at 842 and ~796 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. The comparatively sharp Raman band at 980 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad Raman spectral profile centred upon 1100 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode.
Resumo:
The work presented in this poster outlines the steps taken to model a 4 mm conical collimator (BrainLab, Germany) on a Novalis Tx linear accelerator (Varian, Palo Alto, USA) capable of producing a 6MV photon beam for treatment of Stereotactic Radiosurgery (SRS) patients. The verification of this model was performed by measurements in liquid water and in virtual water. The measurements involved scanning depth dose and profiles in a water tank plus measurement of output factors in virtual water using Gafchromic® EBT3 film.
Resumo:
In the structure of the title salt 2C7H10N+.C8H2Cl2O4(2-) .H2O the two benzylaminium anions have different conformations, one being essentially planar the other having the side-chain rotated out of the benzene plane (minimum ring to side-chain C-C-C-N torsion angles = -3.6(6) and 50.1(5)\%, respectively). In the 4,5-dichlorophthalate dianion the carboxyl groups make ihedral angles of 23.0(2) and 76.5(2)\% with the benzene ring. Aminium N-H...O and water O-H...O hydrogen-bonding associations with carboxyl O-atom acceptors give a two-dimensional duplex sheet structure which extends along the (011) plane. Weak pi-pi interactions are also present between the benzene ring and one of the cation rings [minimum ring centroid separation = 3.749(3)Ang.
Resumo:
The molecular structure of the sodium borate mineral ameghinite NaB3O3(OH)4 has been determined by the use of vibrational spectroscopy. The crystal structure consists of isolated [B3O3(OH)4]- units formed by one tetrahedron and two triangles. H bonds and Na atoms link these polyanions to form a 3-dimensional framework. The Raman spectrum is dominated by an intense band at 1027 cm-1, attributed to BO stretching vibrations of both the trigonal and tetrahedral boron. A series of Raman bands at 1213, 1245 and 1281cm-1 are ascribed to BOH in-plane bending modes. The infrared spectra are characterized by strong overlap of broad multiple bands. An intense Raman band found at 620 cm-1 is attributed to the bending modes of trigonal and tetrahedral boron. Multiple Raman bands in the OH stretching region are observed at 3206, 3249 and 3385 cm-1. Raman spectroscopy coupled with infrared spectroscopy has enabled aspects about the molecular structure of the borate mineral ameghinite to be assessed.
Resumo:
The mineral svanbergite SrAl 3(PO 4,SO 4) 2(OH) 6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites and has been characterised by vibrational spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of svanbergite, which were then associated with the structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Comparison of the hydrogen bond distances and the calculated hydrogen bond distances from the structure models indicates that hydrogen bonding in svanbergite occurs between the two OH units rather than OH to SO42- units.