999 resultados para vicilins (7S storage proteins)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare the efficacy of conservation by freezing the strains of Haemophilus influenzae at -20ºC and -70ºC. Skim milk supplemented with glucose, yeast extract and glycerol allowed highest viability of H. influenzae both at -20ºC and -70ºC from the media analyzed. Trypticase soy broth and brain heart infusion broth supplemented with glycerol, allowed excellent recovery. Use of cotton swaps as supporting material, with or without addition of cryoprotective agents, did not modify H. influenzae viability after six months of storage. Concentration of the initial inoculum positively affected viability when stored at -20ºC. Initial concentration did not influence survival after storage at -70ºC. Thawing at room temperature should not exceed 3 h as to get highest survival percentage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY : Two-component systems are key mediators implicated in the response of numerous bacteria to a wide range of signals and stimuli. The two-component system comprised of the sensor kinase GacS and the response regulator GacA is broadly distributed among γ-proteobacteria bacteria and fulfils diverse functions such as regulation of carbon storage and expression of virulence. In Pseudomonas fluorescens, a soil bacterium which protects plants from root-pathogenic fungi and nematodes, the GacS/GacA two-component system has been shown to be essential for the production of secondary metabolites and exoenzymes required for the biocontrol activity of the bacterium. The regulatory cascade initiated by GacS/GacA consists of two translational repressor proteins, RsmA and RsmE, as well as three GacAcontrolled small regulatory RNAs RsmX, RsmY and RsmZ, which titrate RsmA and RsmE to allow the expression of biocontrol factors. Genetic analysis revealed that two additional sensor kinases termed RetS and Lads were involved as negative and positive control elements, respectively, in the Gac/Rsm pathway in P. fluoresens CHAO. Furthermore, it could be proposed that RetS and Lads interact with GacS, thereby modulating the expression of antibiotic compounds and hydrogen cyanide, as well as the rpoS gene encoding the stress and stationary phase sigma factor σ. Temperature was found to be an important environmental cue that influences the Gac/Rsm network. Indeed, the production of antibiotic compounds and hydrogen cyanide was reduced at 35°C, by comparison with the production at 30°C. RetS was identified to be involved in this temperature control. The small RNA RsmY was confirmed to be positively regulated by GacA and RsmA/RsmE. Two essential regions were identified in the rsmY promoter by mutational analysis, the upstream activating sequence (UAS) and the linker sequence. Although direct experimental evidence is still missing, several observations suggest that GacA may bind to the UAS, whereas the linker region would be recognized by intermediate RsmA/RsmEdependent repressors and/or activators. In conclusion, this work has revealed new elements contributing to the function of the signal transduction mechanisms in the Gac/Rsm pathway. RESUME : Les systèmes ä deux composants sont des mécanismes d'une importance notoire que beaucoup de bactéries utilisent pour faire face et répondre aux stimuli environnementaux. Le système à deux composants comprenant le senseur GacS et le régulateur de réponse GacA est très répandu chez les γ-protéobactéries et remplit des fonctions aussi diverses que la régulation du stockage de carbone ou l'expression de la virulence. Chez Pseudomonas fluorescens CHAO, une bactérie du sol qui protège les racines des plantes contre des attaques de champignons et nématodes pathogènes, le système à deux composants GacS/GacA est essentiel à la production de métabolites secondaires et d'exoenzymes requis pour l'activité de biocontrôle de la bactérie. La cascade régulatrice initiée pas GacS/GacA fait intervenir deux protéines répresseur de traduction, RsmA et RsmE, ainsi que trois petits ARNs RsmX, RsmY et RsmZ, dont la production est contrôlée par GacA. Ces petits ARNs ont pour rôle de contrecarrer l'action des protéines répressseur de la traduction, ce qui permet l'expression de facteurs de biocontrôle. Des analyses génétiques ont révélé la présence de deux senseurs supplémentaires, appelés Rets et Lads, qui interviennent dans la cascade Gac/Rsm de P. fluorescens. L'impact de ces senseurs est, respectivement, négatif et positif. Ces interactions ont apparenunent lieu au niveau de GacS et permettent une modulation de l'expression des antibiotiques et de l'acide cyanhydrique, ainsi que du gène rpoS codant pour le facteur sigma du stress. La température s'est révélée être un facteur environnemental important qui influence la cascade Gac/Rsm. Il s'avère en effet que la production d'antibiotiques ainsi que d'acide cyanhydrique est moins importante à 35°C qu'à 30°C. L'implication du senseur Rets dans ce contrôle par la température a pu être démontrée. La régulation positive du petit ARN RsmY par GacA et RsmA/RsmE a pu être confirmée; par le biais d'une analyse mutationelle, deux régions essentielles ont pu être mises en évidence dans la région promotrice de rsmY. Malgré le manque de preuves expérimentales directes, certains indices suggèrent que GacA puisse directement se fixer sur une des deux régions (appelée UAS), tandis que la deuxième région (appelée linker) serait plutôt reconnue par des facteurs intermédiaires (activateurs ou répresseurs) dépendant de RsmA/RsmE. En conclusion, ce travail a dévoilé de nouveaux éléments permettant d'éclairer les mécanismes de transduction des signaux dans la cascade Gac/Rsm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Click here to download PDF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubule-associated proteins (MAPs) are essential components necessary for the early growth process of axons and dendrites, and for the structural organization within cells. Both MAP2 and MAP5 are involved in these events, MAP2 occupying a role predominantly in dendrites, and MAP5 being involved in both axonal and dendritic growth. In the chick dorsal root ganglia, pseudo-unipolar sensory neurons have a T-shaped axon and are devoid of any dendrites. Therefore, they offer an ideal model to study the differential expression of MAPs during DRG development, specifically during axonal growth. In this study we have analyzed the expression and localization of MAP2 and MAP5 isoforms during chick dorsal root ganglia development in vivo, and in cell culture. In DRG, both MAPs appeared as early as E5. MAP2 consists of the 3 isoforms MAP2a, b and c. On blots, no MAP2a could be found at any stage. MAP2b increased between E6 and E10 and thereafter diminished slowly in concentration, while MAP2c was found between stages E6 and E10 in DRG. By immunocytochemistry, MAP2 isoforms were mainly located in the neuronal perikarya and in the proximal portion of axons, but could not be localized to distal axonal segments, nor in sciatic nerve at any developmental stage. On blots, MAP5 was present in two isoforms, MAP5a and MAP5b. The concentration of MAP5a was highest at E6 and then decreased to a low level at E18. In contrast, MAP5b increased between E6 and E10, and rapidly decreased after E14. Only MAP5a was present in sciatic nerve up to E14. Immunocytochemistry revealed that MAP5 was localized mainly in axons, although neuronal perikarya exhibited a faint immunostaining. Strong staining of axons was observed between E10 and E14, at a time coincidental to a period of intense axonal outgrowth. After E14 immunolabeling of MAP5 decreased abruptly. In DRG culture, MAP2 was found exclusively in the neuronal perikarya and the most proximal neurite segment. In contrast, MAP5 was detected in the neuronal cell bodies and all along their neurites. In conclusion, MAP2 seems involved in the early establishment of the cytoarchitecture of cell bodies and the proximal axon segment of somatosensory neurons, while MAP5 is clearly related to axonal growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During genetic recombination a heteroduplex joint is formed between two homologous DNA molecules. The heteroduplex joint plays an important role in recombination since it accommodates sequence heterogeneities (mismatches, insertions or deletions) that lead to genetic variation. Two Escherichia coli proteins, RuvA and RuvB, promote the formation of heteroduplex DNA by catalysing the branch migration of crossovers, or Holliday junctions, which link recombining chromosomes. We show that RuvA and RuvB can promote branch migration through 1800 bp of heterologous DNA, in a reaction facilitated by the presence of E.coli single-stranded DNA binding (SSB) protein. Reaction intermediates, containing unpaired heteroduplex regions bound by SSB, were directly visualized by electron microscopy. In the absence of SSB, or when SSB was replaced by a single-strand binding protein from bacteriophage T4 (gene 32 protein), only limited heterologous branch migration was observed. These results show that the RuvAB proteins, which are induced as part of the SOS response to DNA damage, allow genetic recombination and the recombinational repair of DNA to occur in the presence of extensive lengths of heterology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein profiles of the New Guinea "C" dengue virus type 2 (DENV-2)prototype and those of a Brazilian DENV-2 isolated in the State of Rio de Janeiro in 1995 were compared. SDS-PAGE analysis showed that the virus from Rio de Janeiro expresses NS5 (93.0 kDa), NS3 (66.8 kDa) E (62.4 kDa) and NS1 (41.2 kDa) proteins differently from the New Guinea "C" virus. The immunoblot revealed specificity and antigenicity for the NS3 protein from DENV-2 Rio de Janeiro mainly in primary infections, convalescent cases, and in secondary infections in both cases and only antigenicity for E and NS1 proteins for both viruses in primary and secondary infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactate release by astrocytes is postulated to be of importance for neuroenergetics but its regulation is poorly understood. Basigin, a chaperone protein for specific monocarboxylate transporters (MCTs), represents a putatively important regulatory element for lactate fluxes. Indeed, basigin knockdown by RNA interference in primary cultures of astrocytes partially reduced both proton-driven lactate influx and efflux. But more strikingly, enhancement of lactate efflux induced by glutamate was prevented while the effect of sodium azide was significantly reduced by treatment of cultured astrocytes with anti-basigin small interfering RNA. Enhancement of glucose utilization was unaffected under the same conditions. Basal lactate uptake and release were significantly reduced by MCT1 knockdown, even more so than with basigin knockdown, whereas glutamate-driven or sodium azide-induced enhancement of lactate release was not inhibited by either MCT1, 2, or 4 small interfering RNAs. In conclusion, MCT1 plays a pivotal role in the control of basal proton-driven lactate flux in astrocytes while basigin is only partly involved, most likely via its interaction with MCT1. In contrast, basigin appears to critically regulate the enhancement of lactate release caused by glutamate (or sodium azide) but via an effect on another unidentified transporter at least present in astrocytes in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: Bacterial small RNAs (sRNAs) are transcripts most of which have regulatory functions. Sequence and secondary structure elements enable numerous sRNAs to interact with mRNAs or with regulatory proteins resulting in diverse regulatory effects on virulence, iron storage, organization of cell envelope proteins or stress response. sRNAs having high affinity for RsmA-like RNA-binding proteins are important for posttranscriptional regulation in various Gram-negative bacteria. In Pseudomonas spp., the GacS/GacA two component system positively controls the production of such sRNAs. They titrate RsmA-like proteins and thus overcome translational repression due to these proteins. As a consequence, secondary metabolites can be produced that are implicated in the biocontrol capacity of P. fluorescens or in the virulence of P. aeruginosa. A genome-wide search carried out in P. aeruginosa PAO1 and in closely related Pseudomonas spp. resulted in the identification of 15 genes coding for sRNAs. Eight of these are novel, the remaining seven have previously been observed. Among them, the 1698 sRNA gene was expressed under GacA control, whereas the transcription of 1887 sRNA gene was transcribed under the control of the anaerobic regulator Anr in an oxygen-limited environment. Overexpression of 1698 sRNA in P. fluorescens strain CHAO did not affect the expression of the GacA-regulated hcnA gene (first gene of the operon coding for HCN synthase), indicating that 1698 sRNA is probably not part of the secondary metabolite regulation pathway. The expression of 1698 sRNA was positively regulated by RpoS in both P. aeruginosa PAO 1 and P. ,fluorescens CHAO and appeared to be modulated temporarily by oxidative stress conditions. However, the effect of 1698 sRNA on oxidative stress survival has not yet been established. Hfq protein interacted with 1698 sRNA in vitro and improved 1698 sRNA expression in vivo in P. aeruginosa. In P. fluorescens, GacA and Hfq were both required for expression of rpoS and GacA showed a positively control on the hfq expression; therefore, at least in this organism, GacA control of 1698 sRNA expression may act indirectly via Hfq and RpoS. Different methods were employed to find abase-pairing target for 1698 sRNA. In a proteomic analysis carried out in P. aeruginosa, positive regulation by 1698 sRNA was observed for Soda, the iron-associated superoxide dismutase, an enzyme involved in oxidative stress resistance. A sequence complementary with 1698 sRNA was predicted to be located in the 5' leader of soda mRNA. However, base-pairing between soda mRNA and 1698 sRNA remains to be proven. In conclusion, this work has revealed eight novel sRNAs and novel functions of two sRNAs in Pseudomonas spp. Résumé Les petits ARNs non-codants (sRNAs) produits par les bactéries sont des transcrits ayant pour la plupart des activités régulatrices importantes. Leurs séquences nucléotidiques ainsi que leurs structures secondaires permettent aux sRNAs d'interagir soit avec des RNA messagers (mRNAs), de sorte à modifier l'expression des protéines pour lesquelles ils codent, soit avec des protéines régulatrices liant des rnRNAs, ce qui a pour effet de modifier l'expression de ces mRNAs. Des sRNAs sont impliqués dans diverses voies de régulation, telles que celles qui régissent la virulence, le stockage du fer, l'organisation des protéines de l'enveloppe bactérienne ou la réponse au stress. Chez les Pseudomonas spp., le système à deux composantes GacS/GacA contrôle la production de métabolites secondaires. Ceux-ci sont engagés dans l'établissement du biocontrôle, chez P. fluorescens, ou. de la virulence, chez P. aeruginosa. La régulation génique dirigée par le système GacS/GacA fait intervenir les sRNAs du type RsmZ, capables de contrecarrer l'action au niveau traductionnel exercée par les protéines régulatrices du type RsmA. Une recherche au niveau du génome a été menée chez P. aeruginosa PAO1 de même que chez des espèces qui lui sont étroitement apparentées, débouchant sur la mise en évidence de 15 gènes codant pour des sRNAs. Parmi ceux-ci, huit ont été découverts pour la première fois et sept confirment des travaux publiés. L'expression du gène du sRNAs 1698 s'avère être régulée par GacA, vraisemblablement de manière indirecte. La transcription du gène du sRNA 1887 montre une dépendance envers Anr, régulateur de l'anaérobiose, et envers une carence en oxygène. La surexpression du sRNA 1698 chez P. fluorescens CHAO n'affecte pas l'expression de hcnA, un gène du régulon GacA, laissant supposer que le sRNA n'intervient pas dans la régulation des métabolites secondaires. Chez P. aeruginosa PAOI et chez P. fluorescens CHAO, RpoS, le facteur sigma du stress, est nécessaire à l'expression du sRNA 1698, et la concentration de ce dernier est modulée par des conditions de stress oxydatif. Toutefois, un effet du sRNA 1698 quant à la survie suite au stress oxydatif n'a pas été établi. Par ailleurs, l'interaction entre le sRNA 1698 et Hfq, la protéine chaperone de RNAs, in vitro ainsi qu'un rôle positif de Hfq pour l'expression du sRNA 1698 in vivo ont été démontrés chez P. aeruginosa. L'induction de l'expression par GacA de rpoS et de hfq a été confirmée chez P. fluorescens CHAO, suggérant que la régulation par GacA du sRNA 1698 pourrait se faire par l'intermédiaire de RpoS et Hfq. Diverses méthodes ont été employées pour identifier un transcrit qui puisse être apparié par le sRNA 1698. Une analyse de protéome chez P. aeruginosa montre que l'expression de Soda, la superoxyde dismutase associée au fer, est positivement régulée par le sRNA 1698. Soda est une enzyme impliquée dans la résistance au stress oxydatif. Une séquence de complémentarité avec le sRNA 1698 a bien été prédite sur le leader 5' du mRNA de soda. Cependant, l'appariement entre le sRNA et son transcrit cible est encore à prouver. En conclusion, ce travail a dévoilé huit nouveaux sRNAs et de nouvelles fonctions pour deux sRNAs chez les Pseudomonas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature control is critical to ensuring food safety for all consumers, currently there is much advice and guidance to consumers on this matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.