933 resultados para transverse stochastic cooling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper builds a simple, empirically-verifiable rational expectations model for term structure of nominal interest rates analysis. It solves an stochastic growth model with investment costs and sticky inflation, susceptible to the intervention of the monetary authority following a policy rule. The model predicts several patterns of the term structure which are in accordance to observed empirical facts: (i) pro-cyclical pattern of the level of nominal interest rates; (ii) countercyclical pattern of the term spread; (iii) pro-cyclical pattern of the curvature of the yield curve; (iv) lower predictability of the slope of the middle of the term structure; and (v) negative correlation of changes in real rates and expected inflation at short horizons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops nonparametric tests of independence between two stationary stochastic processes. The testing strategy boils down to gauging the closeness between the joint and the product of the marginal stationary densities. For that purpose, I take advantage of a generalized entropic measure so as to build a class of nonparametric tests of independence. Asymptotic normality and local power are derived using the functional delta method for kernels, whereas finite sample properties are investigated through Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the general problem of Feasible Generalized Least Squares Instrumental Variables (FG LS IV) estimation using optimal instruments. First we summarize the sufficient conditions for the FG LS IV estimator to be asymptotic ally equivalent to an optimal G LS IV estimator. Then we specialize to stationary dynamic systems with stationary VAR errors, and use the sufficient conditions to derive new moment conditions for these models. These moment conditions produce useful IVs from the lagged endogenous variables, despite the correlation between errors and endogenous variables. This use of the information contained in the lagged endogenous variables expands the class of IV estimators under consideration and there by potentially improves both asymptotic and small-sample efficiency of the optimal IV estimator in the class. Some Monte Carlo experiments compare the new methods with those of Hatanaka [1976]. For the DG P used in the Monte Carlo experiments, asymptotic efficiency is strictly improved by the new IVs, and experimental small-sample efficiency is improved as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the "common feature" in every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences. The techniques discussed in this paper were applied to two relevant issues in macroeconomics and finance: the first asks what type of parametric preference-representation could be validated by asset-return data, and the second asks whether or not our SDF estimator can price returns in an out-of-sample forecasting exercise. In formal testing, we cannot reject standard preference specifications used in the macro/finance literature. Estimates of the relative risk-aversion coefficient are between 1 and 2, and statistically equal to unity. We also show that our SDF proxy can price reasonably well the returns of stocks with a higher capitalization level, whereas it shows some difficulty in pricing stocks with a lower level of capitalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a methodology for testing the term structure of volatility forecasts derived from stochastic volatility models, and implements it to analyze models of S&P500 index volatility. U sing measurements of the ability of volatility models to hedge and value term structure dependent option positions, we fmd that hedging tests support the Black-Scholes delta and gamma hedges, but not the simple vega hedge when there is no model of the term structure of volatility. With various models, it is difficult to improve on a simple gamma hedge assuming constant volatility. Ofthe volatility models, the GARCH components estimate of term structure is preferred. Valuation tests indicate that all the models contain term structure information not incorporated in market prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no 37th Conference on Stochastic Processes and their Applications - July 28 - August 01, 2014 -Universidad de Buenos Aires

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no International Conference on Scientific Computation And Differential Equations 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aim to provide a review of the stochastic discount factor bounds usually applied to diagnose asset pricing models. In particular, we mainly discuss the bounds used to analyze the disaster model of Barro (2006). Our attention is focused in this disaster model since the stochastic discount factor bounds that are applied to study the performance of disaster models usually consider the approach of Barro (2006). We first present the entropy bounds that provide a diagnosis of the analyzed disaster model which are the methods of Almeida and Garcia (2012, 2016); Ghosh et al. (2016). Then, we discuss how their results according to the disaster model are related to each other and also present the findings of other methodologies that are similar to these bounds but provide different evidence about the performance of the framework developed by Barro (2006).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, AISI 1010 steel samples were plasma nitrided into 20% N 2 100 Pa and 400 Pa for N 2 and H 2 , respectively), temperatures of 500 and 580 °C, during 2 h. Three different procedures for cooling were accomplished after nitriding. In the first procedure the cooling occurred naturally, that is, the sample was kept on substrate holder. In the second one the sample was pulled off and cooling in a cold surface. Finally, in the third cooling process the sample was pulled off the substrate holder down into special reservoir filled with oil held at ambient temperature. The properties of the AISI 1010 steel samples were characterized by optical and electron microscopy, X-ray diffraction, Mössbauer spectroscopy and microhardness tests. Thermal gradient inside the sample kept on substrate holder during cooling process was measured by three inserted thermocouples at different depths. When samples were cooled rapidly the transformation of ϵ-Fe 2 − 3 N to γ′-Fe 4 N was inhibited. Such effect is indicated by the high concentration of ϵ-Fe compound zone. To get solid state solution of nitrogen in the diffusion zone, instead of precipitates of nitride phases, the cooling rate should be higher than a critical value of about 0.95 °C/s. When this value is reached at any depth of the diffusion zone, two distinct diffusion zones will appear. Temperature gradients were measured inside the samples as a consequence of the plasma treatment. It's suggested the need for standardization of the term “treatment temperature” for plasma treatment because different nitrided layer properties could be reported for the same “treatment temperature”.