985 resultados para transverse cracking
Resumo:
We study collective scattering with Bose-Einstein condensates interacting with a high-finesse ring cavity. The condensate scatters the light of a transverse pump beam superradiantly into modes which, in contrast to previous experiments, are not determined by the geometrical shape of the condensate, but specified by a resonant cavity mode. Moreover, since the recoil-shifted frequency of the scattered light depends on the initial momentum of the scattered fraction of the condensate, we show that it is possible to employ the good resolution of the cavity as a filter selecting particular quantized momentum states.
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
We derive a new implementation of linear covariant gauges on the lattice, based on a minimizing functional that can be interpreted as the Hamiltonian of a spin-glass model in a random external magnetic field. We show that our method solves most problems encountered in earlier implementations, mostly related to the no-go condition formulated by Giusti [Nucl. Phys. B498, 331 (1997)]. We carry out tests in the SU(2) case in four space-time dimensions. We also present preliminary results for the transverse gluon propagator at different values of the gauge parameter xi.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnetic field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization p. In particular, p can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage. The coherent spin flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression of the Fano factor to values well below 0.5.
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
Adults of Pseudopolydora rosebelae sp. nov. inhabit silty tubes on muddy bottoms in shallow water in southern Brazil, states of Sao Paulo and Rio de Janeiro. They are rare and extremely delicate, attaining 20 mm long for 55 chaetigers. The worms are distinctive by their colourful yellow and black pigmentation on the anterior part of body and palps, prominent transverse hood on the dorsal anterior edge of chaetiger 3, and lack of coloured respiratory pigment in blood. Of 12 examined individuals, all were females. Oogenesis is intraovarian; oocytes develop from chaetigers 14-15 to chaetigers 24-36. Recently laid oocytes were about 150 mu m in diameter, with embryos and developing larvae found in capsules inside female tubes in March-June. Broods comprised up to 23 capsules with 400 propagules. Capsules were joined to each other in a string and each attached by a single thin stalk to the inner wall of the tube. Larvae hatched at the 4-chaetiger stage and fed on plankton. Pelagic larvae are unique among Pseudopolydora in having large ramified mid-dorsal melanophores from chaetiger 3 onwards. Competent larvae are able to settle and metamorphose at the 15-chaetiger stage, but can remain planktonic up to 18 chaetigers. They have one pair of unpigmented ocelli and three pairs of black eyes in the prostomium, unpaired ramified mid-dorsal melanophores on chaetiger 1 and on the pygidium, ramified lateral melanophores on chaetigers 5-10, prominent yellow chromatophores in the prostomium, peristomium, on dorsal and ventral sides of chaetigers and in the pygidium. Branchiae are present on chaetigers 7-10, and gastrotrochs are arranged on chaetigers 3, 5, 7 and 12. Provisional serrated bristles are present in all notopodia, and hooks are present in neuropodia from chaetiger 8 onwards. Two pairs of provisional protonephridia are present in chaetigers 1 and 2, and adult metanephridia are present from chaetiger 4.
Resumo:
The longitudinal and transverse magnetostriction and microstructure of polycrystalline Fe(100-x)Ge(x) (x= 8, 12, 15, 20) alloys were investigated in order to correlate the magnetostriction with microstructure. In order to obtain different microstructures in the Fe(100-x)Ge(x) alloys, the samples were annealed at 600 degrees C during 2 h and at 1150 degrees C for half hour and then quenched in cold water. For Ge concentrations lower than 14 at.%, the longitudinal magnetostriction is positive and increases positively up to 22 ppm at 12 at.% Ge then decreases and vanishes at about 14 at.% Ge. For further Ge concentration increase the longitudinal magnetostriction is negative and reaches -30 ppm for Fe(80)Ge(20). This behavior, that is very similar to that reported for Fe-Si alloys, is explained by the structural changes caused by different thermal histories of the alloys. (C) 2008 Published by Elsevier B. V.
Resumo:
A niobium single crystal was subjected to equal channel angular pressing (ECAP) at room temperature after orienting the crystal such that [1 -1 -1] ayen ND, [0 1 -1] ayen ED, and [-2 -1 -1] ayen TD. Electron backscatter diffraction (EBSD) was used to characterize the microstructures both on the transverse and the longitudinal sections of the deformed sample. After one pass of ECAP the single crystal exhibits a group of homogeneously distributed large misorientation sheets and a well formed cell structure in the matrix. The traces of the large misorientation sheets match very well with the most favorably oriented slip plane and one of the slip directions is macroscopically aligned with the simple shear plane. The lattice rotation during deformation was quantitatively estimated through comparison of the orientations parallel to three macroscopic axes before and after deformation. An effort has been made to link the microstructure with the initial crystal orientation. Collinear slip systems are believed to be activated during deformation. The full constraints Taylor model was used to simulate the orientation evolution during ECAP. The result matched only partially with the experimental observation.
Resumo:
Longitudinal and transverse magnetostriction measurements were performed on polycrystalline Fe(100-x)Ti(x) alloys, for a large Ti concentration range, from x = 8.8 to 34.7 at.%. Our results showed that substituting Fe by Ti does not significantly enhance the magnetostriction. For all Ti concentrations in the magnetically saturated state, the longitudinal magnetostriction values vary from -2 x 10(-6) to 6 x 10(-6). On the other hand, Fe(100-x)Ti(x) alloys exhibit a large forced volume magnetostriction, which increases with increasing Ti-concentration. The magnetostriction behavior could be explained considering investigations of the hyteresis loops and the microstructure.
Resumo:
The dynamic behavior of composite laminates is very complex because there are many concurrent phenomena during composite laminate failure under impact load. Fiber breakage, delaminations, matrix cracking, plastic deformations due to contact and large displacements are some effects which should be considered when a structure made from composite material is impacted by a foreign object. Thus, an investigation of the low velocity impact on laminated composite thin disks of epoxy resin reinforced by carbon fiber is presented. The influence of stacking sequence and energy impact was investigated using load-time histories, displacement-time histories and energy-time histories as well as images from NDE. Indentation tests results were compared to dynamic results, verifying the inertia effects when thin composite laminate was impacted by foreign object with low velocity. Finite element analysis (FEA) was developed, using Hill`s model and material models implemented by UMAT (User Material Subroutine) into software ABAQUS (TM), in order to simulate the failure mechanisms under indentation tests. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper analyzes the behavior of the base of a precast column in the socket foundation with smooth interfaces. This research is motivated by the lack of information and guidelines on the behavior of column bases in the embedded region. An experimental program with two full-scale specimens was carried-out. These two specimens had smooth interfaces at the internal faces of the socket, different embedded lengths and were subjected to loads with large eccentricities. The experimental results showed that the failure of the specimens occurred by the yielding of the longitudinal reinforcement out of the embedded region, while the transverse reinforcement was not very stressed. Some recommendations on the anchorage of the longitudinal reinforcement and a strut-and-tie model for the behavior of column bases in the embedded region are proposed.
Resumo:
Although use of high-strength reinforced concrete (RC) jackets has become common practice worldwide, there are still two unresolved issues regarding the contribution of the original concrete and the effects of existing loads. Twelve RC-jacketed columns were tested with and without preloading under uniaxial compression. Tests showed the entire core to contribute to the capacity of the jacketed column, as long as adequate confinement is provided. Also, preloading does not adversely affect the capacity of the jacketed column, while it may increase its deformability, especially in square sections. Transverse reinforcement in the jacket directly improves ductility of the strengthened column, especially in circular sections.