913 resultados para termografia, termografia, 3D, reverse, engineering, protesi, transtibiali, texture, mapping
Resumo:
Air can be trapped on the crevices of specially textured hydrophobic surfaces immersed in water. This heterogenous state of wetting in which the water is in contact with both the solid surface and the entrapped air is not stable. Diffusion of air into the surrounding water leads to gradual reduction in the size and numbers of the air bubbles. The sustainability of the entrapped air on such surfaces is important for many underwater applications in which the surfaces have to remain submersed for longer time periods. In this paper we explore the suitability of different classes of surface textures towards the drag reduction application by evaluating the time required for the disappearance of the air bubbles under hydrostatic conditions. Different repetitive textures consisting of holes, pillars and ridges of different sizes have been generated in silicon, aluminium and brass by isotropic etching, wire EDM and chemical etching respectively. These surfaces were rendered hydrophobic with self-assembled layer of fluorooctyl trichlorosilane for silicon and aluminium surfaces and 1-dodecanethiol for brass surfaces. Using total internal reflection the air bubbles are visualized with the help of a microscope and time lapse photography. Irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear. In an attempt to reverse the diffusion we explore the possibility of using electrolysis to generate gases at the textured surfaces. The gas bubbles are nucleated everywhere on the surface and as they grow they coalesce with each other and get pinned at the texture edges.
Resumo:
In the present work, a discrete numerical approach is adopted to understand size effect and fracture behavior in concrete. First, a comparison is performed between 2D and 3D geometrically similar structures to analyze thickness effect. The study is supplemented with element failure pattern to analyze crack propagation. Further, changing influence of notch to depth ratio is analyzed by comparing 3D geometrically similar structures with different values of notch depth ratio. Finally, a statistical analysis is performed to understand the influence of structure size and heterogeneity on regression parameters namely Bf(t)' and D-0. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bulk texture measurement of multi-axial forged body center cubic interstitial free steel performed in this study using x-ray and neutron diffraction indicated the presence of a strong {101}aOE (c) 111 > single texture component. Viscoplastic self-consistent simulations could successfully predict the formation of this texture component by incorporating the complicated strain path followed during this process and assuming the activity of {101}aOE (c) 111 > slip system. In addition, a first-order estimate of mechanical properties in terms of highly anisotropic yield locus and Lankford parameter was also obtained from the simulations.
Resumo:
This paper deals with a combined forming and fracture limit diagram and void coalescence analysis for the aluminum alloy Al 1145 alloy sheets of 1.8 mm thickness, annealed at four different temperatures, namely 200, 250, 300, and 350 A degrees C. At different annealing temperatures these sheets were examined for their effects on microstructure, tensile properties, formability, void coalescence, and texture. Scanning electron microscope (SEM) images taken from the fractured surfaces were examined. The tensile properties and formability of sheet metals were correlated with fractography features and void analysis. The variation of formability parameters, normal anisotropy of sheet metals, and void coalescence parameters were compared with texture analysis.
Resumo:
We investigate the direct band-to-band tunneling (BTBT) in a reverse biased molybdenum disulfide (MoS2) nanoribbon p-n junction by analyzing the complex band structure obtained from semiempirical extended Huckel method under relaxed and strained conditions. It is demonstrated that the direct BTBT is improbable in relaxed monolayer nanoribbon; however, with the application of certain uniaxial tensile strain, the material becomes favorable for it. On the other hand, the relaxed bilayer nanoribbon is suitable for direct BTBT but becomes unfavorable when the applied uniaxial tensile or compressive strain goes beyond a certain limit. Considering the Wentzel-Kramers-Brillouin approximation, we evaluate the tunneling probability to estimate the tunneling current for a small applied reverse bias. Reasonably high tunneling current in the MoS2 nanoribbons shows that it can take advantage over graphene nanoribbon in future tunnel field-effect transistor applications.
Resumo:
The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical beta-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.
Resumo:
In the current study, the evolution of microstructure and texture has been studied for Ti-6Al-4V-0.1B alloy during sub-transus thermomechanical processing. This part of the work deals with the deformation response of the alloy by rolling in the (alpha + beta) phase field. The (alpha + beta) annealing behavior of the rolled specimen is communicated in part II. Rolled microstructures of the alloys exhibit either kinked or straight alpha colonies depending on their orientations with respect to the principal rolling directions. The Ti-6Al-4V-0.1B alloy shows an improved rolling response compared with the alloy Ti-6Al-4V because of smaller alpha lamellae size, coherency of alpha/beta interfaces, and multiple slip due to orientation factors. Accelerated dynamic globularization for this alloy is similarly caused by the intralamellar transverse boundary formation via multiple slip and strain accumulation at TiB particles. The (0002)(alpha) pole figures of rolled Ti-6Al-4V alloy shows ``TD splitting'' at lower rolling temperatures because of strong initial texture. Substantial beta phase mitigates the effect of starting texture at higher temperature so that ``RD splitting'' characterizes the basal pole figure. Weak starting texture and easy slip transfer for Ti-6Al-4V-0.1B alloy produce simultaneous TD and RD splittings in basal pole figures at all rolling temperatures.
Resumo:
The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.
Resumo:
In the present investigation, efforts were made to study the different frictional responses of materials with varying crystal structure and hardness during sliding against a relatively harder material of different surface textures and roughness. In the experiments, pins were made of pure metals and alloys with significantly different hardness values. Pure metals were selected based on different class of crystal structures, such as face centered cubic (FCC), body centered cubic (BCC), body centered tetragonal (BCT) and hexagonal close packed (HCP) structures. The surface textures with varying roughness were generated on the counterpart plate which was made of H-11 die steel. The experiments were conducted under dry and lubricated conditions using an inclined pin-on-plate sliding tester for various normal loads at ambient environment. In the experiments, it was found that the coefficient of friction is controlled by the surface texture of the harder mating surfaces. Further, two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. More specifically, stead-state frictional response was observed for the FCC metals, alloys and materials with higher hardness. Stick-slip frictional response was observed for the metals which have limited number of slip systems such as BCT and HCP. In addition, the stick-slip frictional response was dependent on the normal load, lubrication, hardness and surface texture of the counterpart material. However, for a given kind of surface texture, the roughness of the surface affects neither the average coefficient of friction nor the amplitude of stick-slip oscillation significantly.
Resumo:
A Cu-Cu multilayer processed by accumulative roll bonding was deformed to large strains and further annealed. The texture of the deformed Cu-Cu multilayer differs from the conventional fcc rolling textures in terms of higher fractions of Bs and RD-rotated cube components, compared with the volume fraction of Cu component. The elongated grain shape significantly affects the deformation characteristics. Characteristic microstructural features of both continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed in the microtexture measurements. X-ray texture measurements of annealing of heavily deformed multilayer demonstrate constrained recrystallization and resulted in a bimodal grain size distribution in the annealed material at higher strains. The presence of cube- and BR-oriented grains in the deformed material confirms the oriented nucleation as the major influence on texture change during recrystallization. Persistence of cube component throughout the deformation is attributed to dynamic recrystallization. Evolution of RD-rotated cube is attributed to the deformation of cube components that evolve from dynamic recrystallization. The relaxation of strain components leads to Bs at larger strains. Further, the Bs component is found to recover rather than recrystallize during deformation. The presence of predominantly Cu and Bs orientations surrounding the interface layer suggests constrained annealing behavior.
Resumo:
Friction stir processing was carried out on the Al-Mg-Mn alloy to achieve ultrafine grained microstructure. The evolution of microstructure and micro-texture was studied in different regions of the deformed sample, namely nugget zone, thermo-mechanically affected zone (TMAZ) and base metal. The average grain sizes of the nugget zone, TMAZ and base metal are 1.5 mu m +/- 0.5 mu m, 15 mu m +/- 8 mu m, and 80 mu m +/- 10 mu m, respectively. The TMAZ exhibits excessive deformation banding structure and sub-grain formation. The orientation gradient within the sub-grain is dependent on grain size, orientation, and distance from nugget zone. The microstructure was partitioned based on the grain orientation spread and grain size values to separate the recrystallized fraction from the deformed region in order to understand the micromechanism of grain refinement. The texture of both deformed and recrystallized regions are similar in nature. Microstructure and texture analysis suggest that the restoration processes are different in different regions of the processed sample. The transition region between nugget zone and TMAZ exhibits large elongated grains surrounded by fine equiaxed grains of different orientation which indicate the process of discontinuous dynamic recrystallization. Within the nugget zone, similar texture between deformed and recrystallized grain fraction suggests that the restoration mechanism is a continuous process.
Resumo:
A systematic study of the evolution of the microstructure and crystallographic texture during free end torsion of a single phase magnesium alloy Mg-3Al-0.3Mn (AM30) was carried out. The torsion tests were done at a temperature of 250 degrees C to different strain levels in order to examine the progressive evolution of the microstructure and texture. A detailed microstructural analysis was performed using the electron back-scattered diffraction technique. The observed microstructural features indicated the occurrence of continuous dynamic recovery and recrystallization, starting with the formation of subgrains and ending with recrystallized grains with high angle boundaries. Texture and microstructure evolution were analysed by decoupling the effects of imposed shear and of dynamic recrystallization. Microstructure was partitioned to separate the deformed grains from the recovered/recrystallized grains. The texture of the deformed part could be reproduced by viscoplastic self-consistent polycrystal simulations. Recovered/recrystallized grains were formed as a result of rotation of these grains so as to reach a low plastic energy state. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the evolution of microstructure and texture during hot rolling of hafnium containing NiTi based shape memory alloy Ni49.4Ti38.6Hf12. The formation of the R-phase has been associated with the precipitation of (Ti,Hf)(2)Ni phase. The crystallographic texture of the parent phase B2 as well as the product phases R and B19' have been determined. It has been found that the variant selection during the B2 -> R phase transformation is quite strong compared to the case of the B2 -> B19' transformation. During deformation, the texture of the austenite phase evolves with strong Goss and Bs components. After transformation to martensitic structure, it gives rise to a 011]parallel to RD fiber. Microstructure and texture studies reveal the occurrence of partial dynamic recrystallization during hot rolling. Large strain heterogeneities that occur surrounding (Ti,Hf)(2)Ni precipitates are relieved through extended dynamic recovery instead of particle stimulated nucleation.
Resumo:
The bio-corrosion response of ultrafine-grained commercially pure titanium processed by different routes of equal-channel angular pressing has been studied in simulated body fluid. The results indicate that the samples processed through route B-c that involved rotation of the workpiece by 90 deg in the same sense between each pass exhibited higher corrosion resistance compared to the ones processed by other routes of equal-channel angular pressing, as well as the coarse-grained sample. For a similar grain size, the higher corrosion resistance of the samples exhibiting off-basal texture compared to shear texture indicates the major role of texture in corrosion behavior. It is postulated that an optimum combination of microstructure and crystallographic texture can lead to high strength and excellent corrosion resistance.
Resumo:
Four-dimensional fluorescence microscopy-which records 3D image information as a function of time-provides an unbiased way of tracking dynamic behavior of subcellular components in living samples and capturing key events in complex macromolecular processes. Unfortunately, the combination of phototoxicity and photobleaching can severely limit the density or duration of sampling, thereby limiting the biological information that can be obtained. Although widefield microscopy provides a very light-efficient way of imaging, obtaining high-quality reconstructions requires deconvolution to remove optical aberrations. Unfortunately, most deconvolution methods perform very poorly at low signal-to-noise ratios, thereby requiring moderate photon doses to obtain acceptable resolution. We present a unique deconvolution method that combines an entropy-based regularization function with kernels that can exploit general spatial characteristics of the fluorescence image to push the required dose to extreme low levels, resulting in an enabling technology for high-resolution in vivo biological imaging.