963 resultados para synthesis technique
Resumo:
Today, there are growing concerns about the presence of environmental pollutants in many parts of the world. In particular, a lot of attention has been drawn to the levels of water and soil contaminants (de Paiva et al., 2008). The majority of these contaminants consist of NOCs (non-ionic organic compounds) and can enter our waterways through industrial activities, mining operations, crop and animal production, waste disposal and accidental leakage (de Paiva et al., 2008; Park et al., 2011). Therefore, there is an increased interest in the synthesis of new materials that can be used to remove potentially carcinogenic and toxic water contaminants. Smectite type organoclays are widely used in numerous applications, such as sorbent agents for environmental remediation, due to their unique properties (Jiunn-Fwu et al., 1990; Sheng et al., 1996; Zhou et al., 2007; Bektas et al., 2011; Park et al., 2011). This investigation focuses on beidellite (SBId-1), which belongs to the smectite clay family. Their properties include high cation exchange capacity (CEC), swelling properties, porous, high surface area and consequential strong adsorption/absorption capacity (Xi et al., 2007). However, swelling clays in general are not an effective sorbent agent in nature due to their hydrophilic properties. The hydrophilic properties of the clay can be changed to organophilic by intercalating a cationic surfactant. Many applications of organoclays are strongly dependent on their structural properties and hence, a better understanding of the configuration and structural change of organoclay is crucial. Organoclays were synthesised through ion exchange of 21CODTMA (MW: 392.5 g mol-1) and characterised using XRD and FTIR spectroscopy. This study investigates the structural and conformational changes of beidellite intercalated with octadecyltrimethylammonium bromide.
Resumo:
Multilevel converters, because of the benefits they attract in generating high quality output voltage, are used in several applications. Various modulation and control techniques are introduced by several researchers to control the output voltage of the multilevel converters like space vector modulation and harmonic elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this study a new HE technique based on the HE method is proposed for multilevel converters with unequal DC link voltage. The DC link voltage levels are considered as additional variables for the HE method and the voltage levels are defined based on the HE results. Increasing the number of voltage levels can reduce lower order harmonic content because of the fact that more variables are created. In comparison to previous methods, this new technique has a positive effect on the output voltage quality by reducing its total harmonic distortion, which must take into consideration for some applications such as uninterruptable power supply, motor drive systems and piezoelectric transducer excitation. In order to verify the proposed modulation technique, MATLAB simulations and experimental tests are carried out for a single-phase four-level diode-clamped converter.
Resumo:
This paper begins by providing an overview of bike share programs, followed by a critical examination of the growing body of literature on these programs. This synthesis of previous works, both peer-reviewed and grey, includes an identification of the current gaps in knowledge related to the impacts of bike sharing programs. This synthesis represents a critically needed evaluation of the current state of global bike share research, in order to better understand, and maximize the effectiveness of current and future programs. Several consistent themes have emerged within the growing body of research on bike share programs. Firstly, the importance bike share members place on convenience and value for money appears paramount in their motivation to sign up and use these programs. Secondly, and somewhat counter intuitively, scheme members are more likely to own and use private bicycles than non-members. Thirdly, users demonstrate a greater reluctance to wear helmets than private bicycle riders and helmets have acted as a deterrent in jurisdictions in which helmets are mandatory. Finally, and perhaps most importantly from a sustainable transport perspective, the majority of scheme users are substituting from sustainable modes of transport rather than the car.
Resumo:
Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model.
Resumo:
The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu2+, Pb2+). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3 = 2.3, Na2O/SiO2 = 1.4, H2O/Na2O = 50, crystallization time 8 h, crystallization temperature 95 �C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g�1 for Cu2+, Pb2+ with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu2+, Pb2+ from water with metallic contaminants and can be separated easily after a magnetic process.
Resumo:
Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.
Resumo:
The robust and diversely useful isoindoline nitroxide, 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (1; CTMIO), has previously been synthesised in low-to-moderate yields from phthalic anhydride (3). Recent interest in its biological potential as a potent antioxidant and in other areas has seen an increased demand for its production. Herein, three new synthetic routes to CTMIO are presented and their efficiencies assessed. Two routes, via the nitrile 9 and the formyl compound 11, derive from 5-bromo-1,1,3,3-tetramethylisoindoline (6). The third approach starts from the readily accessible starting material, 4-methylphthalic anhydride (12), and proceeds by a methylarene oxidation with potassium permanganate. The three new approaches yield CTMIO in comparable overall yields (16–18 %); however, the synthetic efficiency is most improved when employing the nitrile intermediate 9.
Resumo:
Several approaches have been introduced in literature for active noise control (ANC) systems. Since FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANC applications an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. This paper also proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Benefiting new version of FxLMS algorithm and not continually injection of white noise makes the system more desirable and improves the noise attenuation performance. Comparative simulation results indicate effectiveness of the proposed approach.
Resumo:
Hydrogels are hydrophilic, three dimensional polymers that imbibe large quantities of water while remaining insoluble in aqueous solutions due to chemical or physical cross-linking. The polymers swell in water or biological fluids, immobilizing the bioactive agent, leading to drug release in a well-defined specific manner. Thus the hydrogels’ elastic properties, swellability and biocompatibility make them excellent formulations for drug delivery. Currently, many drug potencies and therapeutic effects are limited or otherwise reduced because of the partial degradation that occurs before the administered drug reaches the desired site of action. On the other hand, sustained release medications release drugs continually, rather than providing relief of symptoms and protection solely when necessary. In fact, it would be much better if drugs could be administered in a manner that precisely matches physiological needs at desired times and at the desired site (site specific targeting). There is therefore an unmet need to develop controlled drug delivery systems especially for delivery of peptide and protein bound drugs. The purpose of this project is to produce hydrogels for structural drug delivery and time-dependent sustained release of drugs (bioactive agents). We use an innovative polymerisation strategy based on native chemical ligation (NCL) to covalently cross-link polymers to form hydrogels. When mixed in aqueous solution, four armed (polyethylene glycol) amine (PEG-4A) end functionalised with thioester and four branched Nterminal cysteine peptide dendrimers spontaneously conjugated to produce biomimetic hydrogels. These hydrogels showed superior resistance to shear stress compared to an equivalent PEG macromonomer system and were shown to be proteolytically degradable with concomitant release of a model payload molecule. This is the first report of a peptide dendrimers/PEG macromonomer approach to hydrogel production and opens up the prospect of facile hydrogel synthesis together with tailored payload release.
Resumo:
Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.
Resumo:
Boron–nitrogen containing compounds with high hydrogen contents as represented by ammonia borane (NH3BH3) have recently attracted intense interest for potential hydrogen storage applications. One such compound is [(NH3)2BH2]B3H8 with a capacity of 18.2 wt% H. Two safe and efficient synthetic routes to [(NH3)2BH2]B3H8 have been developed for the first time since it was discovered 50 years ago. The new synthetic routes avoid a dangerous starting chemical, tetraborane (B4H10), and afford a high yield. Single crystal X-ray diffraction analysis reveals N–Hδ+Hδ−–B dihydrogen interactions in the [(NH3)2BH2]B3H8·18-crown-6 adduct. Extended strong dihydrogen bonds were observed in pure [(NH3)2BH2]B3H8 through crystal structure solution based upon powder X-ray analysis. Pyrolysis of [(NH3)2BH2]B3H8 leads to the formation of hydrogen gas together with appreciable amounts of volatile boranes below 160 °C.
Resumo:
This paper presents a unified view of the relationship between (1) quantity and (2) price generating mechanisms in estimating individual prime construction costs/prices. A brief review of quantity generating techniques is provided with particular emphasis on experientially based assumptive approaches and this is compared with the level of pricing data available for the quantities generated in terms of reliability of the ensuing prime cost estimates. It is argued that there is a tradeoff between the reliability of quantity items and reliability of rates. Thus it is shown that the level of quantity generation is optimised by maximising the joint reliability function of the quantity items and their associated rates. Some thoughts on how this joint reliability function can be evaluated and quantified follow. The application of these ideas is described within the overall strategy of the estimator's decision - "Which estimating technique shall I use for a given level of contract information? - and a case is made for the computer generation of estimates by several methods, with an indication of the reliability of each estimate, the ultimate choice of estimate being left to the estimator concerned. Finally, the potential for the development of automatic estimating systems within this framework is examined.
Resumo:
The microwave synthesis of MnC2O4·2H2O nanoparticles was performed through the thermal double decomposition of oxalic acid dihydrate (C2H2O4·2H2O) and Mn(OAc)2·4H2O solutions using a CATA-2R microwave reactor. Structural characterization was performed using X-ray diffraction (XRD), particle size and shape were analyzed using transmission electron microscopy (TEM). The chemical in the structures was investigated using electron paramagnetic resonance (EPR) as well as optical absorption spectra and near-infrared (NIR) spectroscopies. The nanocrystals produced with this method were pure and had a distorted rhombic octahedral structure.
Resumo:
Amphiphilic poly(ethylene glycol)-block-pol (dimethylsiloxane)-block-poly(ethylene glycol)(PEG-block-PDMS block-PEG) triblock copolymers have been successfully prepared via hydrosilylation using discrete and polydisperse PEG of various chain lengths. Facile synthesis of discrete PEG (dPEG) is achieved via systematic tosylation and etherification of lower glycols. Amphiphilicity of the dPEG block-PDMS-block-dPEG triblock copolymer is illustrated by dynamic light scattering (DLS) and measurement of the critical micelle concentration (CMC).
Resumo:
Two approaches are described, which aid the selection of the most appropriate procurement arrangements for a building project. The first is a multi-attribute technique based on the National Economic Development Office procurement path decision chart. A small study is described in which the utility factors involved were weighted by averaging the scores of five 'experts' for three hypothetical building projects. A concordance analysis is used to provide some evidence of any abnormal data sources. When applied to the study data, one of the experts was seen to be atypical. The second approach is by means of discriminant analysis. This was found to provide reasonably consistent predictions through three discriminant functions. The analysis also showed the quality criteria to have no significant impact on the decision process. Both approaches provided identical and intuitively correct answers in the study described. Some concluding remarks are made on the potential of discriminant analysis for future research and development in procurement selection techniques.