995 resultados para spectrometry spectra interpretation
Resumo:
Valganciclovir and ganciclovir are widely used for the prevention of cytomegalovirus (CMV) infection in solid organ transplant recipients, with a major impact on patients' morbidity and mortality. Oral valganciclovir, the ester prodrug of ganciclovir, has been developed to enhance the oral bioavailability of ganciclovir. It crosses the gastrointestinal barrier through peptide transporters and is then hydrolysed into ganciclovir. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of therapeutic drug monitoring. Based on currently available literature, ganciclovir pharmacokinetics in adult solid organ transplant recipients receiving oral valganciclovir are characterized by bioavailability of 66 +/- 10% (mean +/- SD), a maximum plasma concentration of 3.1 +/- 0.8 mg/L after a dose of 450 mg and of 6.6 +/- 1.9 mg/L after a dose of 900 mg, a time to reach the maximum plasma concentration of 3.0 +/- 1.0 hours, area under the plasma concentration-time curve values of 29.1 +/- 5.3 mg.h/L and 51.9 +/- 18.3 mg.h/L (after 450 mg and 900 mg, respectively), apparent clearance of 12.4 +/- 3.8 L/h, an elimination half-life of 5.3 +/- 1.5 hours and an apparent terminal volume of distribution of 101 +/- 36 L. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Unexplained interpatient variability is limited (18% in apparent clearance and 28% in the apparent central volume of distribution). There is no indication of erratic or limited absorption in given subgroups of patients; however, this may be of concern in patients with severe malabsorption. The in vitro pharmacodynamics of ganciclovir reveal a mean concentration producing 50% inhibition (IC(50)) among CMV clinical strains of 0.7 mg/L (range 0.2-1.9 mg/L). Systemic exposure of ganciclovir appears to be moderately correlated with clinical antiviral activity and haematotoxicity during CMV prophylaxis in high-risk transplant recipients. Low ganciclovir plasma concentrations have been associated with treatment failure and high concentrations with haematotoxicity and neurotoxicity, but no formal therapeutic or toxic ranges have been validated. The pharmacokinetic parameters of ganciclovir after valganciclovir administration (bioavailability, apparent clearance and volume of distribution) are fairly predictable in adult transplant patients, with little interpatient variability beyond the effect of renal function and bodyweight. Thus ganciclovir exposure can probably be controlled with sufficient accuracy by thorough valganciclovir dosage adjustment according to patient characteristics. In addition, the therapeutic margin of ganciclovir is loosely defined. The usefulness of systematic therapeutic drug monitoring in adult transplant patients therefore appears questionable; however, studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.
Resumo:
This article summarizes the basic principles of mass spectrometry instrumentation with special emphasis in sample introduction methods, ionization techniques and mass analyzers used in the different mass spectrometrytechniques.
Resumo:
In this article, selected examples of applications of liquid chromatography coupled to mass spectrometry are given. The examples include the analysis of i) impurities in manufactured, pharmaceutical or synthesis products, ii) polyphenols in natural products, and iii) phytohormones in plant extracts. Finally, examples of applications of molecular characterization via flow injection analysis by electron spray ionization mass spectrometry (ESI-MS) are also given.
Resumo:
This article summarizes the configurations involving isotope ratio mass spectrometry (IRMS) technology available at the CCiTUB and the wide range of possible applications. Some examples of these applications are shown.
Resumo:
This article outlines the basis of the technique and shows some examples of applications in order to exhibit the expectations of this technique invaried scientific fields.
Resumo:
The study of proteins has been a key element in biomedicine and biotechnology because of their important role in cell functions or enzymatic activity. Cells are the basic unit of living organisms, which are governed by a vast range of chemical reactions. These chemical reactions must be highly regulatedin order to achieve homeostasis. Proteins are polymeric molecules that havetaken on the evolutionary process the role, along with other factors, of controlthese chemical reactions. Learning how proteins interact and control their up anddown regulations can teach us how living cells regulate their functions, as well asthe cause of certain anomalies that occur in different diseases where proteins areinvolved. Mass spectrometry (MS) is an analytical widely used technique to studythe protein content inside the cells as a biomarker point, which describesdysfunctions in diseases and increases knowledge of how proteins are working.All the methodologies involved in these descriptions are integrated in the fieldcalled Proteomics.
Resumo:
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.
Resumo:
The objective of this work was to evaluate the resistance spectra of six elite breeding lines of rice, developed for improved yield and grain quality, in inoculation tests in the greenhouse and in the field. Forty-six isolates of Pyricularia grisea collected from the cultivar Primavera, 31 from the cultivar Maravilha and 19 from six elite breeding lines, totaling 96 were utilized for inoculations. Out of 11 international and 15 Brazilian pathotypes, IC-1, IB-9, and BD-16, respectively, were identified as most frequent isolates collected from the cultivar Primavera. The isolates retrieved from Maravilha belong to four international and 11 Brazilian pathotypes, the predominant ones being IB-9 and IB-49 and BB-1 and BB-21, respectively. Lines CNAs 8711 and CNAs 8983 showed resistant reaction to all test isolates from Maravilha, while CNAs 8983 was susceptible to three isolates of Primavera pertaining to the pathotype IC-1. A majority of isolates exhibiting compatible reaction to Primavera were incompatible to Maravilha and vice-versa.Field assessment of rice blast utilizing the area under disease progress curve as a criterion for measuring disease severity showed significant differences among the six breeding lines. The isolates of P. grisea exhibiting differential reaction on breeding lines can be utilized in pyramiding resistance genes in new upland rice cultivars.
Resumo:
Expression of water soluble proteins of fresh pork Longissimus thoracis from 4 pure breed pigs (Duroc, Large White, Landrace, and Piétrain) was studied to identify candidate protein markers for meat quality. Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) was used to obtain the soluble protein profiles of Longissimus thoracis muscles. The pure breeds showed differences among the studied meat quality traits (pHu, drip loss, androstenone, marbling, intramuscular fat, texture, and moisture), but no significant differences were detected in sensory analysis. Associations between protein peaks obtained with SELDI-TOF-MS and meat quality traits, mainly water holding capacity, texture and skatole were observed. Of these peaks, a total of 10 peaks from CM10 array and 6 peaks from Q10 array were candidate soluble protein markers for pork loin quality. The developed models explained a limited proportion of the variability, however they point out interesting relationships between protein expression and meat quality
Resumo:
Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.
Resumo:
We present the application of terrestrial laser scanning (TLS) for the monitoring and characterization of an active landslide area in Val Canaria (Ticino, Southern Swiss Alps). At catchment scale, the study area is affected by a large Deep Seated Gravitational Slope Deformation (DSGSD) area presenting, in the lower boundary, several retrogressive landslides active since the 1990s. Due to its frequent landslide events this area was periodically monitored by TLS since 2006. Periodic acquisitions provided new information on 3D displacements at the bottom of slope and the detection of centimetre to decimetre level scale changes (e.g. rockfall and pre-failure deformations). In October 2009, a major slope collapse occured at the bottom of the most unstable area. Based on the comparison between TLS data before and after the collapse, we carried out a detailed failure mechanism analysis and volume calculation.
Resumo:
Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair.
Resumo:
Propane can be responsible for several types of lethal intoxication and explosions. Quantifying it would be very helpful to determine in some cases the cause of death. Some gas chromatography-mass spectrometry (GC-MS) methods of propane measurements do already exist. The main drawback of these GC-MS methods described in the literature is the absence of a specific propane internal standard necessary for accurate quantitative analysis. The main outcome of the following study was to provide an innovative Headspace-GC-MS method (HS-GC-MS) applicable to the routine determination of propane concentration in forensic toxicology laboratories. To date, no stable isotope of propane is commercially available. The development of an in situ generation of standards is thus presented. An internal-labeled standard gas (C3DH7) is generated in situ by the stoichiometric formation of propane by the reaction of deuterated water (D2O) with Grignard reagent propylmagnesium chloride (C3H7MgCl). The method aims to use this internal standard to quantify propane concentrations and, therefore, to obtain precise measurements. Consequently, a complete validation with an accuracy profile according to two different guidelines, the French Society of Pharmaceutical Sciences and Techniques (SFSTP) and the Gesellschaft für toxikologische und Forensische Chemie (GTFCh), is presented.