946 resultados para single-wave function
Resumo:
The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15(n), respectively, for n-dimensional nano-structures (n = 1,2,3). Our proposals can be widely applied in the design of various nano-structure devices.
Resumo:
The in-plane optical anisotropies of a series of GaAs/AlxGa1-xAs single-quantum-well structures have been observed at room temperature by reflectance difference spectroscopy. The measured degree of polarization of the excitonic transitions is inversely proportional to the well width. Numerical calculations based on the envelope function approximation incorporating the effect of C-2v-interface symmetry have been performed to analyze the origin of the optical anisotropy. Good agreement with the experimental data is obtained when the optical anisotropy is attributed to anisotropic-interface structures. The fitted interface potential parameters are consistent with predicted values.
Resumo:
We have obtained the parameter-phase diagram, which unambiguously defines the parameter region for the use of InAs/GaAs quantum dot as two-level quantum system in quantum computation in the framework of the effective-mass envelope function theory. Moreover, static electric field is found to efficiently prolong decoherence time. As a result, decoherence time may reach the order of magnitude of milli-seconds as external static electric field goes beyond 20 kV/cm if only vacuum fluctuation is taken as the main source for decoherence. Our calculated results are useful for guiding the solid-state implementation of quantum computing.
Resumo:
The time evolution of the quantum mechanical state of an electron is calculated in the framework of the effective-mass envelope function theory for an InAs/GaAs quantum dot. The results indicate that the superposition state electron density oscillates in the quantum dot, with a period on the order of femtoseconds. The interaction energy E-ij between two electrons located in different quantum dots is calculated for one electron in the ith pure quantum state and another in the jth pure quantum state. We find that E-11]E-12]E-22, and E-ij decreases as the distance between the two quantum dots increases. We present a parameter-phase diagram which defines the parameter region for the use of an InAs/GaAs quantum dot as a two-level quantum system in quantum computation. A static electric field is found to efficiently prolong the decoherence time. Our results should be useful for designing the solid-state implementation of quantum computing. (C) 2001 American Institute of Physics.
Resumo:
A simple method based on the effective index method was used to estimate the minimum bend radii of curved SOI waveguides. An analytical formula was obtained to estimate the minimum radius of curvature at which the mode becomes cut off due to the side radiative loss.
Resumo:
Under short pulse laser excitation, we have observed an extra high-energy photoluminescence (PL) emission from GaNAs/GaAs single quantum wells (QWs). It dominates the PL spectra under high excitation and/or at high temperature. By measuring the PL dependence on both temperature and excitation power and by analyzing the time-resolved PL results, we have attributed the PL peak to the recombination of delocalized excitons in QWs. Furthermore, a competition process between localized and delocalized excitons is observed in the temperature-dependent PL spectra under the short pulse excitation. This competition is believed to be responsible for the temperature-induced S-shaped PL shift often observed in the disordered alloy semiconductor system under continuous-wave excitation. (C) 2001 American Institute of Physics.
Resumo:
The optical properties and the band lineup in GaNAs/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL) technique were investigated. It was found that the low-temperature PL is dominated by the intrinsic localized exciton emission. By fitting the experimental datawith a simple calculation, band offset of the GaN0.015As0.985/GaAs heterostructure was estimated. Moreover, DeltaE(c), the discontinuity of the conduction band was found to be a nonlinear function of the nitrogen composition (chi) and the average variation of DeltaE(c) is about 0. 110eV per % N, such smaller than that reported on the literature to (0.156 similar to 0.175 eV/N %). In addition, Qc has little change whtn N composition increares, with an experimential relation of QC approximate tox(0.25). The band bowing coefficient (b) was also studied in this paper. The measured band bowing coefficient shows a strong function of chi, giving an experimental support to the theoretic calculation of Wei Su-Huai and Zunger Alex (1996).
Resumo:
The effect of rapid thermal annealing (RTA) on the optical properties of GaNxAs1-x/GaAs strained single quantum well (SQW) was studied by low-temperature photoluminescence (PL). The GaNxAs1-x/GaAs SQW structures were prepared by dc active nitrogen plasma assisted molecular beam epitaxy. PL measurements on a series of samples with different well widths and nitrogen compositions were used to evaluate the effects of RTA. The annealing temperature and time were varied from 650 to 850 degrees C and 30 s to 15 min, respectively. Remarkable improvements of the optical properties of the samples were observed after RTA under optimum conditions. The interdiffusion constants have been calculated by taking into account error function diffusion and solving the Schrodinger equation. The estimated interdiffusion constants D are 10(-17)-10(-16) cm(2)/s for the earlier annealing conditions. Activation energies of 6-7 eV are obtained by fitting the temperature dependence of the interdiffusion constants. (C) 2000 American Institute of Physics. [S0021-8979(00)10401-3].
Resumo:
One novel neuron with variable nonlinear transfer function is firstly proposed, It could also be called as subsection transfer function neuron. With different transfer function components, by virtue of multi-thresholded, the variable transfer function neuron switch on among different nonlinear excitated state. And the comparison of output's transfer characteristics between it and single-thresholded neuron will be illustrated, with some practical application experiments on Bi-level logic operation, at last the simple comparison with conventional BP, RBF, and even DBF NN is taken to expect the development foreground on the variable neuron.. The novel nonlinear transfer function neuron could implement the random nonlinear mapping relationship between input layer and output layer, which could make variable transfer function neuron have one much wider applications on lots of reseach realm such as function approximation pattern recognition data compress and so on.
Resumo:
We demonstrated oxide-confined 850-nm vertical-cavity surface-emitting lasers (VCSELs) with a two-dimensional petal-shaped holey structure composed of several annular-sector-shaped holes. Four types of devices with different hole numbers were designed and fabricated. The measured results showed that the larger hole number was beneficial to purifying the lasing mode, and realizing the single-mode operation. The side mode suppression ratio (SMSR) exceeded 30 dB throughout the entire drive current. Mode selective loss mechanism was used to explain the single-mode characteristic. The single-mode devices possessed good beam profiles, and the lowest divergence angle was as narrow as 3.2 degrees (full width at half maximum), attributed to the graded index profile and the shallow etching in the top distributed Bragg reflector (DBR).
Resumo:
A design of single-mode distributed feedback quantum cascade lasers (DFB-QCLs) with surface metal grating is described. A rigorous modal expansion theory is adopted to analyse the interaction between the waveguide mode and the surface plasmon wave for different grating parameters. A stable single-mode operation can be obtained in a wide range of grating depths and duty cycles. The single-mode operation of surface metal grating DFB-QCLs at room temperature for lambda = 8.5 mu m is demonstrated. The device shows a side-mode suppression ratio of above 20 dB. A linear tuning of wavelength with temperature indicates the stable single-mode operation without mode hopping.
Resumo:
Using the full-vector plane-wave expansion method, a kind of PMMA-based polarization-maintaining microstructured optical fibre (PM-mPOF) is theoretically studied. Dependence of the cutoff wavelengths of the two orthogonal polarization states (polarized along the two principal axes of PM-mPOF) on the structure parameters of the fibre is investigated in detail. A single-polarization single-mode (SPSM) PM-mPOF working in the visible region is designed and optimized with the result of the maximum SPSM bandwidth of 140 nm.
Resumo:
In this paper, we investigate the mechanism of tunable parametric superfluorescence (PS) based on the second harmonic generation and parametric processes taking place in the same nonlinear crystal (BBO). The tunable spectra of PS has been generated between 480 nm and 530 nm, which is pumped by the second-harmonic from the high-power Ti: sapphire laser system at 1 kHz repetition rate. We present the generation mechanism of PS theoretically and simulate the process of PS ring using the amplification transfer function. The experiment and the theory show that PS will appear when the phase matching angle for second-harmonic generation is close to the optimal pump angle for optical parametric generation, and then the tunable spectra of PS are generated by slightly adjusting the crystal angle. The result provides a theoretical basis for controlling the generation of PS and quantum entanglement states, which is of great significance for the development of quantum imaging, quantum communications and other applieations.
Resumo:
A rapid algorithm for phase and amplitude reconstruction from a single spatial-carrier interferogram is proposed by bringing a phase-shifting mechanism into reconstruction of a carrier-frequency interferogram. The algorithm reconstructs phase through directly obtaining and integrating its real-value derivatives, avoiding a phase unwrapping process. The proposed method is rapid and easy to implement and is made insensitive to the profile of the interferogram boundaries by choosing a suitable integrating path. Moreover, the algorithm can also be used to reconstruct the amplitude of the object wave expediently without retrieving the phase profile in advance. The feasibility of this algorithm is demonstrated by both numerical simulation and experiment. (c) 2008 Optical Society of America.
Resumo:
Harmonic millimeter wave (mm-wave) generation and frequency up-conversion are experimentally demonstrated using optical injection locking and Brillouin selective sideband amplification (BSSA) induced by stimulated Brillouin scattering in a 10-km single-mode fiber. By using this method, we successfully generate third-harmonic mm-wave at 27 GHz (f(LO) - 9 GHz) with single sideband (SSB) modulation and up-convert the 2GHz intermediate frequency signal into the mm-wave band with single mode modulation of the SSB modes. In addition, the mm-wave carrier obtains more than 23 dB power gain due to the BSSA. The transmission experiments show that the generated mm-wave and up-converted signals indicate strong immunity against the chromatic dispersion of the fibers.