994 resultados para reaction window theory
Resumo:
An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20–30%), and not that of molecular N2. Our results suggest the feasibility of enhancement of CO2/N2 separation in CNT-based membranes by using exohedral doping of metal atoms.
Resumo:
The structures and thermodynamic properties of methyl derivatives of ammonia–borane (BH3NH3, AB) have been studied with the frameworks of density functional theory and second-order Møller–Plesset perturbation theory. It is found that, with respect to pure AB, methyl ammonia–boranes show higher complexation energies and lower reaction enthalpies for the release of H2, together with a slight increment of the activation barrier. These results indicate that the methyl substitution can enhance the reversibility of the system and prevent the formation of BH3/NH3, but no enhancement of the release rate of H2 can be expected.
Resumo:
Recent work [S. Chaudhuri, J.T. Muckerman, J. Phys. Chem. B 109 (2005) 6952] reported that two Ti-substituted atoms on an Al(0 0 1) surface can form a catalytically active site for the dissociation of H2, but the diffusion barrier of atomic H away from Ti site is as high as 1.57 eV. By using ab initio density functional calculations, we found that two hydrogen molecules can dissociate on isolated-Ti atom doped Al(0 0 1) surface with small activation barriers (0.21 and 0.235 eV for first and second H2, respectively). Additionally, the diffusion barrier of atomic H away from Ti site is also moderate (0.47 eV). These results contribute further towards understanding the improved kinetics observed in recycling of hydrogen with Ti-doped NaAlH4.
Resumo:
The sidewall additions of diazomethane to (n, n), n = 3–10 armchair single-walled carbon nanotubes (SWCNTs) on two different orientations of C–C bonds have been studied using the ONIOM(B3LYP/6-31G(d):PM3) approach. The binding energies of SWCNTs complexes with CH2N2, CH2 and their transition-state structures were computed at the B3LYP/6-31G(d) level. The effects of diameters of armchair SWCNTs on their binding energies were studied. Relative reactivities of all the SWCNTs and their complexes based on their frontier orbital energies gaps are reported.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
In this paper, the collision of a C36, with D6h symmetry, on diamond (001)-(/2×1) surface was investigated using molecular dynamics (MD) simulation based on the semi-empirical Brenner potential. The incident kinetic energy of the C36 ranges from 20 to 150 eV per cluster. The collision dynamics was investigated as a function of impact energy Ein. The C36 cluster was first impacted towards the center of two dimers with a fixed orientation. It was found that when Ein was lower than 30 eV, C36 bounces off the surface without breaking up. Increasing Ein to 30-45 eV, bonds were formed between C36 and surface dimer atoms, and the adsorbed C36 retained its original free-cluster structure. Around 50-60 eV, the C36 rebounded from the surface with cage defects. Above 70 eV, fragmentation both in the cluster and on the surface was observed. Our simulation supported the experimental findings that during low-energy cluster beam deposition small fullerenes could keep their original structure after adsorption (i.e. the memory effect), if Ein is within a certain range. Furthermore, we found that the energy threshold for chemisorption is sensitive to the orientation of the incident C36 and its impact position on the asymmetric surface.
Resumo:
The Design Science Research Roadmap (DSR-Roadmap) [1] aims to give detailed methodological guidance to novice researchers in Information Systems (IS) DSR. Focus group evaluation, one phase of the overall study, of the evolving DSR-Roadmap revealed that a key difficulty faced by both novice and expert researchers in DSR, is abstracting design theory from design. This paper explores the extension of the DSR-Roadmap by employing IS deep structure ontology (BWW [2-4]) as a lens on IS design to firstly yield generalisable design theory, specifically 'IS Design Theory' (ISDT) elements [5]. Consideration is next given to the value of BWW in the application of the design theory by practitioners. Results of mapping BWW constructs to ISDT elements suggest that the BWW is promising as a common language between design researchers and practitioners, facilitating both design theory and design implementation
Resumo:
This thesis analysed the theoretical and ontological issues of previous scholarship concerning information technology and indigenous people. As an alternative, the thesis used the framework of actor-network-theory, especially through historiographical and ethnographic techniques. The thesis revealed an assemblage of indigenous/digital enactments striving for relevance and avoiding obsolescence. It also recognised heterogeneities- including user-ambivalences, oscillations, noise, non-coherences and disruptions - as part of the milieu of the daily digital lives of indigenous people. By taking heterogeneities into account, the thesis ensured that the data “speaks for itself” and that social inquiry is not overtaken by ideology and ontology.
Resumo:
The reaction of CO2 and H2 with ZnO/SiO2 catalyst at 295 K gave predominantly hydrogencarbonate on zinc oxide and a small quantity of formate was evolved after heating at 393 K. Elevation of the reaction temperature to 503 K enhanced the rate of formation of zinc formate species. Significantly these formate species decomposed at 573 K almost entirely to CO2 and H2. Even after exposure of CO2-H2 or CO-CO2-H2 mixtures to highly defected ZnO/SiO2 catalyst, the formate species produced still decomposed to give CO2 and H2. It was concluded that carboxylate species which were formed at oxygen anion vacancies on polar Zn planes were not significantly hydrogenated to formate. Consequently it was proposed that the non-polar planes on zinc oxide contained sites which were specific for the synthesis of methanol. The interaction of CO2 and H2 with reduced Cu/ZnO/SiO2 catalyst at 393 K gave copper formate species in addition to substantial quantities of formate created at interfacial sites between copper and zinc oxide. It was deduced that interfacial formate species were produced from the hydrogenation of interfacial bidentate carbonate structures. The relevance of interfacial formate species in the methanol synthesis reaction is discussed. Experiments concerning the reaction of CO2-H2 with physical mixtures of Cu/SiO2 and ZnO/SiO2 gave results which were simply characteristic of the individual components. By careful consideration of previous data a detailed proposal regarding the role of spillover hydrogen is outlined. Admission of CO to a gaseous CO2-H2 feedstock resulted in a considerably diminished amount of formate species on copper. This was ascribed to a combination of over-reduction of the surface and site-blockage.
Resumo:
Queensland University of Technology (QUT) Library offers a range of resources and services to researchers as part of their research support portfolio. This poster will present key features of two of the data management services offered by research support staff at QUT Library. The first service is QUT Research Data Finder (RDF), a product of the Australian National Data Service (ANDS) funded Metadata Stores project. RDF is a data registry (metadata repository) that aims to publicise datasets that are research outputs arising from completed QUT research projects. The second is a software and code registry, which is currently under development with the sole purpose of improving discovery of source code and software as QUT research outputs. RESEARCH DATA FINDER As an integrated metadata repository, Research Data Finder aligns with institutional sources of truth, such as QUT’s research administration system, ResearchMaster, as well as QUT’s Academic Profiles system to provide high quality data descriptions that increase awareness of, and access to, shareable research data. The repository and its workflows are designed to foster better data management practices, enhance opportunities for collaboration and research, promote cross-disciplinary research and maximise the impact of existing research data sets. SOFTWARE AND CODE REGISTRY The QUT Library software and code registry project stems from concerns amongst researchers with regards to development activities, storage, accessibility, discoverability and impact, sharing, copyright and IP ownership of software and code. As a result, the Library is developing a registry for code and software research outputs, which will use existing Research Data Finder architecture. The underpinning software for both registries is VIVO, open source software developed by Cornell University. The registry will use the Research Data Finder service instance of VIVO and will include a searchable interface, links to code/software locations and metadata feeds to Research Data Australia. Key benefits of the project include:improving the discoverability and reuse of QUT researchers’ code and software amongst QUT and the QUT research community; increasing the profile of QUT research outputs on a national level by providing a metadata feed to Research Data Australia, and; improving the metrics for access and reuse of code and software in the repository.
Resumo:
Evidence within Australia and internationally suggests parenthood as a risk factor for inactivity; however, research into understanding parental physical activity is scarce. Given that active parents can create active families and social factors are important for parents’ decision making, the authors investigated a range of social influences on parents’ intentions to be physically active. Parents (N = 580; 288 mothers and 292 fathers) of children younger than 5 years completed an extended Theory of Planned Behavior questionnaire either online or paper based. For both genders, attitude, control factors, group norms, friend general support, and an active parent identity predicted intentions, with social pressure and family support further predicting mothers’ intentions and active others further predicting fathers’ intentions. Attention to these factors and those specific to the genders may improve parents’ intentions to be physically active, thus maximizing the benefits to their own health and the healthy lifestyle practices for other family members.
Resumo:
BACKGROUND: Donor retention is vital to blood collection agencies. Past research has highlighted the importance of early career behavior for long-term donor retention, yet research investigating the determinants of early donor behavior is scarce. Using an extended Theory of Planned Behavior (TPB), this study sought to identify the predictors of first-time blood donors' early career retention. STUDY DESIGN AND METHODS: First-time donors (n = 256) completed three surveys on blood donation. The standard TPB predictors and self-identity as a donor were assessed 3 weeks (Time 1) and at 4 months (Time 2) after an initial donation. Path analyses examined the utility of the extended TPB to predict redonation at 4 and 8 months after initial donation. RESULTS: The extended TPB provided a good fit to the data. Post-Time 1 and 2 behavior was consistently predicted by intention to redonate. Further, intention was predicted by attitudes, perceived control, and self-identity (Times 1 and 2). Donors' intentions to redonate at Time 1 were the strongest predictor of intention to donate at Time 2, while donors' behavior at Time 1 strengthened self-identity as a blood donor at Time 2. CONCLUSION: An extended TPB framework proved efficacious in revealing the determinants of first-time donor retention in an initial 8-month period. The results suggest that collection agencies should intervene to bolster donors' attitudes, perceived control, and identity as a donor during this crucial post–first donation period.
Resumo:
The representation of business process models has been a continuing research topic for many years now. However, many process model representations have not developed beyond minimally interactive 2D icon-based representations of directed graphs and networks, with little or no annotation for information overlays. In addition, very few of these representations have undergone a thorough analysis or design process with reference to psychological theories on data and process visualization. This dearth of visualization research, we believe, has led to problems with BPM uptake in some organizations, as the representations can be difficult for stakeholders to understand, and thus remains an open research question for the BPM community. In addition, business analysts and process modeling experts themselves need visual representations that are able to assist with key BPM life cycle tasks in the process of generating optimal solutions. With the rise of desktop computers and commodity mobile devices capable of supporting rich interactive 3D environments, we believe that much of the research performed in computer human interaction, virtual reality, games and interactive entertainment have much potential in areas of BPM; to engage, provide insight, and to promote collaboration amongst analysts and stakeholders alike. We believe this is a timely topic, with research emerging in a number of places around the globe, relevant to this workshop. This is the second TAProViz workshop being run at BPM. The intention this year is to consolidate on the results of last year's successful workshop by further developing this important topic, identifying the key research topics of interest to the BPM visualization community.