984 resultados para radiação UV-C
Resumo:
This work evaluated the effect of the Amblyomma cajennense tick on the immune response of BALB/c mice and on horse lymph node cell proliferation. We observed that mice do not develop resistance to nymphs of this tick species and that lymphocyte proliferation of this host is inhibited by tick saliva, nymphal extract, or infestations. Horse lymph node cell proliferation is inhibited by tick saliva as well. Mice lymphocytes under the effect of tick saliva, nymphal extract, or infestations display a predominantly. p Th-2 cytokine production pattern. Observed results partially explain this tick`s disease vectoring capacity and broad host range.
Resumo:
The authors present a comparative analysis between a triple-band S-C-L erbium-doped fibre amplifier and a commercial semiconductor optical amplifier in a CWDM application scenario. Both technologies were characterised for gain and noise figures from 1480 to 1610 nm (S, C and L bands) and their systemic performances were evaluated in terms of bit error rate measurements for a wide range of optical power levels.
Resumo:
The objective of this paper is to provide and verify simplified models that predict the longitudinal stresses that develop in C-section purlins in uplift. The paper begins with the simple case of flexural stress: where the force has to be applied at the shear center, or the section braced in both flanges. Restrictions on load application point and restraint of the flanges are removed until arriving at the more complex problem of bending when movement of the tension flange alone is restricted, as commonly found in purlin-sheeting systems. Winter`s model for predicting the longitudinal stresses developed due to direct torsion is reviewed, verified, and then extended to cover the case of a bending member with tension flange restraint. The developed longitudinal stresses from flexure and restrained torsion are used to assess the elastic stability behavior of typical purlin-sheeting systems. Finally, strength predictions of typical C-section purlins are provided for existing AISI methods and a newly proposed extension to the direct strength method that employs the predicted longitudinal stress distributions within the strength prediction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to evaluate the influence of different carbon sources and the carbon/nitrogen ratio (C/N) on the production and main composition of insoluble extracellular polymers (EPS) produced in an anaerobic sequencing batch biofilm reactor (ASBBR) with immobilized biomass in polyurethane foam. The yield of EPS was 23.6 mg/g carbon, 13.3 mg/g carbon, 9.0 mg/g carbon and 1.4 mg/g carbon when the reactor was fed with glucose, soybean oil. fat acids, and meat extract, respectively. The yield of EPS decreased from 23.6 to 2.6 mg/g carbon as the C/N ratio was decreased from 13.6 to 3.4 gC/gN, using glucose as carbon source. EPS production was not observed under strict anaerobic conditions. The results suggest that the carbon source, microaerophilic conditions and high C/N ratio favor EPS production in the ASBBR used for wastewater treatment. Cellulose was the main exopolysaccharide observed in all experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Effluents originated in cellulose pulp manufacturing processes are usually toxic and recalcitrant, specially the bleaching effluents, which exhibit high contents of aromatic compounds (e.g. residual lignin derivates). Although biological processes are normally used, their efficiency for the removal of toxic lignin derivates is low. The toxicity and recalcitrance of a bleached Kraft pulp mill were assessed through bioassays and ultraviolet absorption measurements, i.e. acid soluble lignin (ASL), UV(280), and specific ultraviolet absorption (SUVA), before and after treatment by an integrated system comprised of an anaerobic packed-bed bioreactor and oxidation step with ozone. Furthermore, adsorbable organic halides (AOX) were measured. The results demonstrated not only that the toxic recalcitrant compounds can be removed successfully using integrated system, but also the ultraviolet absorption measurements can be an interesting control-parameter in a wastewater treatment.
Resumo:
The purpose of this study was to present a methodology with superior efficiency for inactivating pathogenic indicators commonly found in domestic sewage. The adopted method was based on synergistic effect resulting from the introduction of a UV radiation pre-disinfection stage of sewage followed by secondary treatment. A pilot unit was installed in the sewage treatment plant of the University of Sao Paulo to simulate the combined system in full-scale operational conditions. Its performance was evaluated through microbiological examinations for determining Escherichia coli, total coliforms and coliphages. The application of UV radiation at 5.1mW/cm(2) for 10 s of exposure in the first disinfection stage was enough to reduce the surviving number of E. coli around 100 times, in comparison to the conventional method. Therefore, based on experimental data, it is possible to conclude that combining treatment and pre-disinfection stage is an effective potential technique to produce effluents with lower degree of contamination by pathogenic organisms.
Resumo:
Multilayer CVD coatings for high speed cutting applications were designed to achieve high wear and heat resistance during machining of steel alloys. In this work the microstructure and cutting performance of these novel multilayer CVD coatings are investigated and compared with standard CVD multilayer coatings. 3D-FIB tomography is used to characterize the microstructure of the layers, especially the transition between the Ti(C,N) and the Al(2)O(3) layer. The 3D reconstruction of the surface of the Ti(C,N) layer shows the formation of protruded Ti(C,N) grains with a very particular architecture, which penetrate into the Al(2)O(3) top-layer, providing a mechanical anchoring between both layers. Cemented carbides coated with the novel CVD multilayer present reduced crater and flank wear as well as improved adherence between the Al(2)O(3) top-layer and the Ti(C,N) layer leading to a dramatic improvement of cutting performance.
Resumo:
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.
Resumo:
In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA (R)) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA (R) type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study is to investigate the thermal performance of cool colored acrylic paints containing infrared reflective pigments in comparison to conventional colored acrylic paints of similar colors (white, brown and yellow) applied on sheets of corrugated fiber cement roofing. Evaluated properties are: color according to ASTM D 2244-89, the UV/VIS/NIR reflectance according to ASTM E 90396, and thermal performance by exposure to infrared radiation emitted from a lamp with the measurement of surface temperatures of the specimens with thermocouples connected to a data logging system. Results demonstrated that the cool colored paint formulations produced significantly higher NIR reflectance than conventional paints of similar colors, and that the surface temperatures were more than 10 degrees C lower than those of conventional paints when exposed to infrared radiation. The study shows that cool paints enhance thermal comfort inside buildings, which can reduce air conditioning costs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The 475 degrees C embrittlement in stainless steels is a well-known phenomenon associated to alpha prime (alpha`) formed by precipitation or spinodal decomposition. Many doubts still remain on the mechanism of alpha` formation and its consequence on deformation and fracture mechanisms and corrosion resistance. In this investigation, the fracture behavior and corrosion resistance of two high performance ferritic stainless steels were investigated: a superferritic DIN 1.4575 and MA 956 superalloy were evaluated. Samples of both stainless steels (SS) were aged at 475 degrees C for periods varying from 1 to 1,080 h. Their fracture surfaces were observed using scanning electron microscopy (SEM) and the cleavage planes were determined by electron backscattering diffraction (EBSD). Some samples were tested for corrosion resistance using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Brittle and ductile fractures were observed in both ferritic stainless steels after aging at 475 degrees C. For aging periods longer than 500 h, the ductile fracture regions completely disappeared. The cleavage plane in the DIN 1.4575 samples aged at 475 degrees C for 1,080 h was mainly {110}, however the {102}, {314}, and {131} families of planes were also detected. The pitting corrosion resistance decreased with aging at 475 degrees C. The effect of alpha prime on the corrosion resistance was more significant in the DIN 1.4575 SS comparatively to the Incoloy MA 956.
Resumo:
This work studied the electrochemical behavior of a solution treated or 550 degrees C aged Cu10Ni-3Al-1.3Fe alloy, in 0.01 M NaCl aqueous solution, through potentiodynamic polarization in both stagnant condition or under erosion process. Results showed the occurrence of a passivity break potential (E(pb)), related to the beginning of the denickelification process, which occurred as a localized attack under stagnant electrolyte. Under erosion conditions localized denickelification was not observed, despite of the presence of E(pb). This could indicate that selective corrosion of Ni, which caused the observed E(pb), occurred as a dissolution-redeposition process, with removal of the Cu deposits during erosion process. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The influence of the addition of high-impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene-butadiene-styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 770-779, 2011
Resumo:
The effect of ultraviolet radiation on the properties of poly(3-hydroxybutyrate) (PHB) was studied. The PHB investigated is produced from microbial fermentation using saccharose from sugarcane as the carbon source to the bacteria. The material was exposed to artificial UV-A radiation for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. The experimental results showed that PHB undergoes both chain scission and cross-linking reactions, but the continuous decrease in its mechanical properties and the low amount of gel content upon UV exposure indicated that the scission reactions were predominant. Molar mass, melting temperature and crystallinity measurements for two layers of PHB samples with different depth suggested that the material has a strong degradation profile, which was attributed to its dark colour that restricted the transmission of light. Previous photodegradation initially delayed PHB biodegradability, due to the superficial increase in crystallinity seen with UV exposure. The possible reactions taking place during PHB photodegradation were presented and discussed in terms of the infrared and nuclear magnetic resonance spectra. A reference peak (internal standard) in the infrared spectra was proposed for PHB photodegradation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The weathering behavior of polystyrene and polystyrene-montmorillonite composites containing 2.5, 5.0, and 7.5 wt% of montmorillonite (MMT) was investigated. Samples were exposed to UV radiation for periods of up to similar to 12 weeks and their molecular weight, chemical changes, and mechanical properties were monitored as a function of time. The addition of MMT was shown to improve the photostability of all composites investigated, probably because of a screen effect against UV radiation and barrier effect against diffusion of oxygen promoted by the silicate layers of MMT. Scanning electron microscopy of fracture surfaces of degraded samples showed that there is a degraded layer near the surface that provided a recovery of tensile strength of the samples.