960 resultados para radar remote sensing
Resumo:
Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.
Resumo:
This paper is an elaboration of the DECA algorithm [1] to blindly unmix hyperspectral data. The underlying mixing model is linear, meaning that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. The proposed method, as DECA, is tailored to highly mixed mixtures in which the geometric based approaches fail to identify the simplex of minimum volume enclosing the observed spectral vectors. We resort then to a statitistical framework, where the abundance fractions are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. With respect to DECA, we introduce two improvements: 1) the number of Dirichlet modes are inferred based on the minimum description length (MDL) principle; 2) The generalized expectation maximization (GEM) algorithm we adopt to infer the model parameters is improved by using alternating minimization and augmented Lagrangian methods to compute the mixing matrix. The effectiveness of the proposed algorithm is illustrated with simulated and read data.
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures for wavelength-division (de) multiplexing applications. The non selective WDM device is a double heterostructure in a glass/ITO/a-SiC:H (p-i-n) /a-SiC:H(-p) /a-Si:H(-i')/a-SiC:H (-n')/ITO configuration. The single or the multiple modulated wavelength channels are passed through the device, and absorbed accordingly to its wavelength, giving rise to a time dependent wavelength electrical field modulation across it. The effect of single or multiple input signals is converted to an electrical signal to regain the information (wavelength, intensity and frequency) of the incoming photogenerated carriers. Here, the (de) multiplexing of the channels is accomplished electronically, not optically. This approach offers advantages in terms of cost since several channels share the same optical components; and the electrical components are typically less expensive than the optical ones. An electrical model gives insight into the device operation.
Resumo:
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
Resumo:
Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.
Resumo:
Chpater in Book Proceedings with Peer Review Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Proceedings, Part II
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.
Resumo:
International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany
Resumo:
Proceedings of International Conference Conference Volume 7830 Image and Signal Processing for Remote Sensing XVI Lorenzo Bruzzone Toulouse, France | September 20, 2010
Resumo:
Proceedings of International Conference - SPIE 7477, Image and Signal Processing for Remote Sensing XV - 28 September 2009
Resumo:
Estuaries are perhaps the most threatened environments in the coastal fringe; the coincidence of high natural value and attractiveness for human use has led to conflicts between conservation and development. These conflicts occur in the Sado Estuary since its location is near the industrialised zone of Peninsula of Setúbal and at the same time, a great part of the Estuary is classified as a Natural Reserve due to its high biodiversity. These facts led us to the need of implementing a model of environmental management and quality assessment, based on methodologies that enable the assessment of the Sado Estuary quality and evaluation of the human pressures in the estuary. These methodologies are based on indicators that can better depict the state of the environment and not necessarily all that could be measured or analysed. Sediments have always been considered as an important temporary source of some compounds or a sink for other type of materials or an interface where a great diversity of biogeochemical transformations occur. For all this they are of great importance in the formulation of coastal management system. Many authors have been using sediments to monitor aquatic contamination, showing great advantages when compared to the sampling of the traditional water column. The main objective of this thesis was to develop an estuary environmental management framework applied to Sado Estuary using the DPSIR Model (EMMSado), including data collection, data processing and data analysis. The support infrastructure of EMMSado were a set of spatially contiguous and homogeneous regions of sediment structure (management units). The environmental quality of the estuary was assessed through the sediment quality assessment and integrated in a preliminary stage with the human pressure for development. Besides the earlier explained advantages, studying the quality of the estuary mainly based on the indicators and indexes of the sediment compartment also turns this methodology easier, faster and human and financial resource saving. These are essential factors to an efficient environmental management of coastal areas. Data management, visualization, processing and analysis was obtained through the combined use of indicators and indices, sampling optimization techniques, Geographical Information Systems, remote sensing, statistics for spatial data, Global Positioning Systems and best expert judgments. As a global conclusion, from the nineteen management units delineated and analyzed three showed no ecological risk (18.5 % of the study area). The areas of more concern (5.6 % of the study area) are located in the North Channel and are under strong human pressure mainly due to industrial activities. These areas have also low hydrodynamics and are, thus associated with high levels of deposition. In particular the areas near Lisnave and Eurominas industries can also accumulate the contamination coming from Águas de Moura Channel, since particles coming from that channel can settle down in that area due to residual flow. In these areas the contaminants of concern, from those analyzed, are the heavy metals and metalloids (Cd, Cu, Zn and As exceeded the PEL guidelines) and the pesticides BHC isomers, heptachlor, isodrin, DDT and metabolits, endosulfan and endrin. In the remain management units (76 % of the study area) there is a moderate impact potential of occurrence of adverse ecological effects and in some of these areas no stress agents could be identified. This emphasizes the need for further research, since unmeasured chemicals may be causing or contributing to these adverse effects. Special attention must be taken to the units with moderate impact potential of occurrence of adverse ecological effects, located inside the natural reserve. Non-point source pollution coming from agriculture and aquaculture activities also seem to contribute with important pollution load into the estuary entering from Águas de Moura Channel. This pressure is expressed in a moderate impact potential for ecological risk existent in the areas near the entrance of this Channel. Pressures may also came from Alcácer Channel although they were not quantified in this study. The management framework presented here, including all the methodological tools may be applied and tested in other estuarine ecosystems, which will also allow a comparison between estuarine ecosystems in other parts of the globe.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
This paper introduces a new unsupervised hyperspectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the endmembers. The proposed method, an extension of our previous studies, resorts to the statistical framework. The abundance fraction prior is a mixture of Dirichlet densities, thus automatically enforcing the constraints on the abundance fractions imposed by the acquisition process, namely, nonnegativity and sum-to-one. A cyclic minimization algorithm is developed where the following are observed: 1) The number of Dirichlet modes is inferred based on the minimum description length principle; 2) a generalized expectation maximization algorithm is derived to infer the model parameters; and 3) a sequence of augmented Lagrangian-based optimizations is used to compute the signatures of the endmembers. Experiments on simulated and real data are presented to show the effectiveness of the proposed algorithm in unmixing problems beyond the reach of the geometrically based state-of-the-art competitors.