980 resultados para physical, chemical, and biochemical soil properties
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
The aim of this study was to evaluate the physical, chemical, and functional properties of recovered proteins of anchovy (Engraulis anchoita) and whitemouth croaker (Micropogonias furnieri) through the process of alkaline solubilisation and isoelectric precipitation, using different solubilisation (NaOH and KOH) and precipitation (HCl and H3PO4) reagents. The tests showed high protein level, and the lowest lipid reduction (94.5%) was found in the recovered protein of anchovy, the lowest yield of the process was 76.1%. The highest whiteness (78.8 and 74.2) was found in whitemouth croaker proteins. The solubilisation of the recovered protein was studied in the pH range (3, 5, 7, 9, and 11). The maximum solubility was at pHs 3 and 11 and minimum solubility was at pH 5 in the species under study.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Relação entre macrofauna, agregação e atributos edáficos em sequência de culturas sob plantio direto
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
New titanium alloys for biomedical applications have been developed primarily with the addition of Nb, Ta, Mo, and Zr, because those elements stabilize the β phase and they don’t cause cytotoxicity in the organism. The objective of this paper is to analyze the effect of molybdenum on the structure, microstructure, and selected mechanical properties of Ti-15Zr-xMo (x = 5, 10, 15, and 20 wt%) alloys. The samples were produced in an arc-melting furnace with inert argon atmosphere, and they were hot-rolled and homogenized. The samples were characterized using chemical, structural, and microstructural analysis. The mechanical analysis was made using Vickers microhardness and Young’s modulus measurements. The compositions of the alloys were sensitive to the molybdenum concentration, indicating the presence of α’+α”+β phases in the Ti-15Zr-5Mo alloy, α”+β in the Ti-15Zr-10Mo alloy, and β phase in the Ti-15Zr-15Mo and Ti-15Zr-20Mo alloys. The mechanical properties showed favorable values for biomedical application in the alloys presenting high hardness and low Young’s modulus compared with CP-Ti.
Resumo:
We have investigated the magnetic and transport properties of nanoscaled Fe3O4 films obtained from Chemical Vapor Deposition (CVD) technique using [(FeFe2III)-Fe-II(OBut)(8)] and [Fe-2(III)(OBut)(6)] precursors. Samples were deposited on different substrates (i.e., MgO (001), MgAl2O4 (001) and Al2O3 (0001)) with thicknesses varying from 50 to 350 nm. Atomic Force Microscopy analysis indicated a granular nature of the samples, irrespective of the synthesis conditions (precursor and deposition temperature, T-pre) and substrate. Despite the similar morphology of the films, magnetic and transport properties were found to depend on the precursor used for deposition. Using [(FeFe2III)-Fe-II(OBut)(8)] as precursor resulted in lower resistivity, higher M-S and a sharper magnetization decrease at the Verwey transition (T-V). The temperature dependence of resistivity was found to depend on the precursor and T-pre. We found that the transport is dominated by the density of antiferromagnetic antiphase boundaries (AF-APB's) when [(FeFe2III)-Fe-II(OBut)(8)] precursor and T-pre = 363 K are used. On the other hand, grain boundary-scattering seems to be the main mechanism when [Fe-2(III)(OBut)(6)] is used. The Magnetoresistance (MR(H)) displayed an approximate linear behavior in the high field regime (H > 796 kA/m), with a maximum value at room-temperature of similar to 2-3 % for H = 1592 kA/m, irrespective from the transport mechanism.
Resumo:
Compartmentalization is a prerequisite to understand large wetlands that receive water from several sources. However, it faces the heterogeneity in space and time, resulting from physical, chemical and biological processes that are specific to wetlands. The Pantanal is a vast seasonally flooded continental wetland located in the centre of South America. The chemical composition of the waters that supply the Pantanal (70 rivers) has been studied in order to establish a compartmentalization of the wetland based on soil-water interactions. A PCA-based EMMA (End-Members Mixing Analysis) procedure shows that the chemistry of the rivers can be viewed as a mixture of 3 end-members, influenced by lithology and land use, and delimiting large regions. Although the chemical composition of the end-members changed between dry and wet seasons, their spatial distribution was maintained. The results were extended to the floodplain by simple tributary mixing calculation according to the hydrographical network and to the areas of influence for each river when in overflow conditions. The resulting map highlights areas of high geochemical contrast on either side of the river Cuiaba in the north, and of the rivers Aquidauana and Abobral in the south. The PCA-based treatment on a sampling conducted in the Nhecolandia, a large sub region of the Pantanal, allowed the identification and ordering of the processes that control the geochemical variability of the surface waters. Despite an enormous variability in electrical conductivity and pH, all data collected were in agreement with an evaporation process of the Taquari River water, which supplies the region. Evaporation and associated saline precipitations (Mg-calcite, Mg-silicates K-silicates) explained more than 77% of the total variability in the chemistry of the regional surface water sampling.