912 resultados para parametric resonance
Resumo:
Potential parameters sensitivity analysis for helium unlike molecules, HeNe, HeAr, HeKr and HeXe is the subject of this work. Number of bound states these rare gas dimers can support, for different angular momentum, will be presented and discussed. The variable phase method, together with the Levinson's theorem, is used to explore the quantum scattering process at very low collision energy using the Tang and Toennies potential. These diatomic dimers can support a bound state even for relative angular momentum equal to five, as in HeXe. Vibrational excited states, with zero angular momentum, are also possible for HeKr and HeXe. Results from sensitive analysis will give acceptable order of magnitude on potentials parameters.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.
Resumo:
A simple and sensitive spectrophotometric method is proposed for the simultaneous determination of protocatechuic acid and protocatechuic aldehyde. The method is based on the difference in the kinetic rates of the reactions of analytes with [Ag(NH3)2]+ in the presence of polyvinylpyrrolidone to produce silver nanoparticles. The data obtained were processed by chemometric methods using principal component analysis artificial neural network and partial least squares. Excellent linearity was obtained in the concentration ranges of 1.23-58.56 µg mL-1 and 0.08-30.39 µg mL-1 for PAC and PAH, respectively. The limits of detection for PAC and PAH were 0.039 and 0.025 µg mL-1, respectively.
Resumo:
In this thesis three experiments with atomic hydrogen (H) at low temperatures T<1 K are presented. Experiments were carried out with two- (2D) and three-dimensional (3D) H gas, and with H atoms trapped in solid H2 matrix. The main focus of this work is on interatomic interactions, which have certain specific features in these three systems considered. A common feature is the very high density of atomic hydrogen, the systems are close to quantum degeneracy. Short range interactions in collisions between atoms are important in gaseous H. The system of H in H2 differ dramatically because atoms remain fixed in the H2 lattice and properties are governed by long-range interactions with the solid matrix and with H atoms. The main tools in our studies were the methods of magnetic resonance, with electron spin resonance (ESR) at 128 GHz being used as the principal detection method. For the first time in experiments with H in high magnetic fields and at low temperatures we combined ESR and NMR to perform electron-nuclear double resonance (ENDOR) as well as coherent two-photon spectroscopy. This allowed to distinguish between different types of interactions in the magnetic resonance spectra. Experiments with 2D H gas utilized the thermal compression method in homogeneous magnetic field, developed in our laboratory. In this work methods were developed for direct studies of 3D H at high density, and for creating high density samples of H in H2. We measured magnetic resonance line shifts due to collisions in the 2D and 3D H gases. First we observed that the cold collision shift in 2D H gas composed of atoms in a single hyperfine state is much smaller than predicted by the mean-field theory. This motivated us to carry out similar experiments with 3D H. In 3D H the cold collision shift was found to be an order of magnitude smaller for atoms in a single hyperfine state than that for a mixture of atoms in two different hyperfine states. The collisional shifts were found to be in fair agreement with the theory, which takes into account symmetrization of the wave functions of the colliding atoms. The origin of the small shift in the 2D H composed of single hyperfine state atoms is not yet understood. The measurement of the shift in 3D H provides experimental determination for the difference of the scattering lengths of ground state atoms. The experiment with H atoms captured in H2 matrix at temperatures below 1 K originated from our work with H gas. We found out that samples of H in H2 were formed during recombination of gas phase H, enabling sample preparation at temperatures below 0.5 K. Alternatively, we created the samples by electron impact dissociation of H2 molecules in situ in the solid. By the latter method we reached highest densities of H atoms reported so far, 3.5(5)x1019 cm-3. The H atoms were found to be stable for weeks at temperatures below 0.5 K. The observation of dipolar interaction effects provides a verification for the density measurement. Our results point to two different sites for H atoms in H2 lattice. The steady-state nuclear polarizations of the atoms were found to be non-thermal. The possibility for further increase of the impurity H density is considered. At higher densities and lower temperatures it might be possible to observe phenomena related to quantum degeneracy in solid.
Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations
Resumo:
A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.
Resumo:
Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.
Resumo:
Background: Approximately two percent of Finns have sequels after traumatic brain injury (TBI), and many TBI patients are young or middle-aged. The high rate of unemployment after TBI has major economic consequences for society, and traumatic brain injury often has remarkable personal consequences, as well. Structural imaging is often needed to support the clinical TBI diagnosis. Accurate early diagnosis is essential for successful rehabilition and, thus, may also influence the patient’s outcome. Traumatic axonal injury and cortical contusions constitute the majority of traumatic brain lesions. Several studies have shown magnetic resonance imaging (MRI) to be superior to computed tomography (CT) in the detection of these lesions. However, traumatic brain injury often leads to persistent symptoms even in cases with few or no findings in conventional MRI. Aims and methods: The aim of this prospective study was to clarify the role of conventional MRI in the imaging of traumatic brain injury, and to investigate how to improve the radiologic diagnostics of TBI by using more modern diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) techniques. We estimated, in a longitudinal study, the visibility of the contusions and other intraparenchymal lesions in conventional MRI at one week and one year after TBI. We used DWI-based measurements to look for changes in the diffusivity of the normal-appearing brain in a case-control study. DTI-based tractography was used in a case-control study to evaluate changes in the volume, diffusivity, and anisotropy of the long association tracts in symptomatic TBI patients with no visible signs of intracranial or intraparenchymal abnormalities on routine MRI. We further studied the reproducibility of different tools to identify and measure white-matter tracts by using a DTI sequence suitable for clinical protocols. Results: Both the number and extent of visible traumatic lesions on conventional MRI diminished significantly with time. Slightly increased diffusion in the normal-appearing brain was a common finding at one week after TBI, but it was not significantly associated with the injury severity. Fractional anisotropy values, that represent the integrity of the white-matter tracts, were significantly diminished in several tracts in TBI patients compared to the control subjects. Compared to the cross-sectional ROI method, the tract-based analyses had better reproducibility to identify and measure white-matter tracts of interest by means of DTI tractography. Conclusions: As conventional MRI is still applied in clinical practice, it should be carried out soon after the injury, at least in symptomatic patients with negative CT scan. DWI-related brain diffusivity measurements may be used to improve the documenting of TBI. DTI tractography can be used to improve radiologic diagnostics in a symptomatic TBI sub-population with no findings on conventional MRI. Reproducibility of different tools to quantify fibre tracts vary considerably, which should be taken into consideration in the clinical DTI applications.
Resumo:
Composite flooring systems supported by tapered (varying web depth) beams are very attractive from an economic point of view. However, the tapered beam sections are fabricated from plate by welding, and are susceptible to imperfection effects. These may interact with the localised compressive stress field that is generated in the web at a slope change in the lower flange to cause local web buckling. A substantial parametric study using a non-linear elasto-plastic finite element program and covering practical ranges of the important parameters including the area of the tension flange, taper slope and web thickness is reported. Moment-rotation relations, peak moments and failure mechanisms have been predicted. The validity of the work is supported by the good correlation obtained between the results of the parametric study and experimental data.
Resumo:
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.
Resumo:
Systemic iron overload (IO) is considered a principal determinant in the clinical outcome of different forms of IO and in allogeneic hematopoietic stem cell transplantation (alloSCT). However, indirect markers for iron do not provide exact quantification of iron burden, and the evidence of iron-induced adverse effects in hematological diseases has not been established. Hepatic iron concentration (HIC) has been found to represent systemic IO, which can be quantified safely with magnetic resonance imaging (MRI), based on enhanced transverse relaxation. The iron measurement methods by MRI are evolving. The aims of this study were to implement and optimise the methodology of non-invasive iron measurement with MRI to assess the degree and the role of IO in the patients. An MRI-based HIC method (M-HIC) and a transverse relaxation rate (R2*) from M-HIC images were validated. Thereafter, a transverse relaxation rate (R2) from spin-echo imaging was calibrated for IO assessment. Two analysis methods, visual grading and rSI, for a rapid IO grading from in-phase and out-of-phase images were introduced. Additionally, clinical iron indicators were evaluated. The degree of hepatic and cardiac iron in our study patients and IO as a prognostic factor in patients undergoing alloSCT were explored. In vivo and in vitro validations indicated that M-HIC and R2* are both accurate in the quantification of liver iron. R2 was a reliable method for HIC quantification and covered a wider HIC range than M-HIC and R2*. The grading of IO was able to be performed rapidly with the visual grading and rSI methods. Transfusion load was more accurate than plasma ferritin in predicting transfusional IO. In patients with hematological disorders, the prevalence of hepatic IO was frequent, opposite to cardiac IO. Patients with myelodysplastic syndrome were found to be the most susceptible to IO. Pre-transplant IO predicted severe infections during the early post-transplant period, in contrast to the reduced risk of graft-versus-host disease. Iron-induced, poor transplantation results are most likely to be mediated by severe infections.
Resumo:
The objective of the present study was to identify the single photon emission computed tomography (SPECT) and magnetic resonance (MR) findings in juvenile systemic lupus erythematosus (JSLE) patients with CNS involvement and to try to correlate them with neurological clinical history data and neurological clinical examination. Nineteen patients with JSLE (16 girls and 3 boys, mean age at onset 9.2 years) were submitted to neurological examination, electroencephalography, cerebrospinal fluid analysis, SPECT and MR. All the evaluations were made separately within a period of 15 days. SPECT and MR findings were analyzed independently by two radiologists. Electroencephalography and cerebrospinal fluid analysis revealed no relevant alterations. Ten of 19 patients (53%) presented neurological abnormalities including present or past neurological clinical history (8/19, 42%), abnormal neurological clinical examination (5/19, 26%), and abnormal SPECT or MR (8/19, 42% and 3/19, 16%, respectively). The most common changes in SPECT were cerebral hypoperfusion and heterogeneous distribution of blood flow. The most common abnormalities in MR were leukomalacia and diffuse alterations of white matter. There was a correlation between SPECT and MR (P<0.05). We conclude that SPECT and MR are complementary and useful exams in the evaluation of neurological involvement of lupus.
Resumo:
Reported neuroimaging studies have shown functional and morphological changes of temporal lobe structures in panic patients, but only one used a volumetric method. The aim of the present study was to determine the volume of temporal lobe structures in patients with panic disorder, measured by magnetic resonance imaging. Eleven panic patients and eleven controls matched for age, sex, handedness, socioeconomic status and years of education participated in the study. The mean volume of the left temporal lobe of panic patients was 9% smaller than that of controls (t21 = 2.37, P = 0.028). In addition, there was a trend (P values between 0.05 and 0.10) to smaller volumes of the right temporal lobe (7%, t21 = 1.99, P = 0.06), right amygdala (8%, t21 = 1.83, P = 0.08), left amygdala (5%, t21 = 1.78, P = 0.09) and left hippocampus (9%, t21 = 1.93, P = 0.07) in panic patients compared to controls. There was a positive correlation between left hippocampal volume and duration of panic disorder (r = 0.67, P = 0.025), with recent cases showing more reduction than older cases. The present results show that panic patients have a decreased volume of the left temporal lobe and indicate the presence of volumetric abnormalities of temporal lobe structures.
Resumo:
In the present experimental study we assessed induced osteoarthritis data in rabbits, compared three diagnostic methods, i.e., radiography (XR), computed tomography (CT) and magnetic resonance imaging (MRI), and correlated the imaging findings with those obtained by macroscopic evaluation. Ten young female rabbits of the Norfolk breed were used. Seven rabbits had the right knee immobilized in extension for a period of 12 weeks (immobilized group), and three others did not have a limb immobilized and were maintained under the same conditions (control group). Alterations observed by XR, CT and MRI after the period of immobilization were osteophytes, osteochondral lesions, increase and decrease of joint space, all of them present both in the immobilized and non-immobilized contralateral limbs. However, a significantly higher score was obtained for the immobilized limbs (XT: P = 0.016, CT: P = 0.031, MRI: P = 0.0156). All imaging methods were able to detect osteoarthritis changes after the 12 weeks of immobilization. Macroscopic evaluation identified increased thickening of joint capsule, proliferative and connective tissue in the femoropatellar joint, and irregularities of articular cartilage, especially in immobilized knees. The differences among XR, CT and MRI were not statistically significant for the immobilized knees. However, MRI using a 0.5 Tesla scanner was statistically different from CT and XR for the non-immobilized contralateral knees. We conclude that the three methods detected osteoarthritis lesions in rabbit knees, but MRI was less sensitive than XR and CT in detecting lesions compatible with initial osteoarthritis. Since none of the techniques revealed all the lesions, it is important to use all methods to establish an accurate diagnosis.