872 resultados para oxygen delivery
Resumo:
We tested the performance of transcutaneous oxygen monitoring (TcPO2) and pulse oximetry (tcSaO2) in detecting hypoxia in critically ill neonatal and pediatric patients. In 54 patients (178 data sets) with a mean age of 2.4 years (range 1 to 19 years), arterial saturation (SaO2) ranged from 9.5 to 100%, and arterial oxygen tension (PaO2) from 16.4 to 128 mmHg. Linear correlation analysis of pulse oximetry vs measured SaO2 revealed an r value of 0.95 (p less than 0.001) with an equation of y = 21.1 + 0.749x, while PaO2 vs tcPO2 showed a correlation coefficient of r = 0.95 (p less than 0.001) with an equation of y = -1.04 + 0.876x. The mean difference between measured SaO2 and tcSaO2 was -2.74 +/- 7.69% (range +14 to - 29%) and the mean difference between PaO2 and tcPO2 was +7.43 +/- 8.57 mmHg (range -14 to +49 mmHg). Pulse oximetry was reliable at values above 65%, but was inaccurate and overestimated the arterial SaO2 at lower values. TcPO2 tended to underestimate the arterial value with increasing PaO2. Pulse oximetry had the best sensitivity to specificity ratio for hypoxia between 65 and 90% SaO2; for tcPO2 the best results were obtained between 35 and 55 mmHg PaO2.
Resumo:
Miller Creek is on the 2006 Section 303d Impaired Waters List and has a 19,926 acre watershed. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to sediment and nutrient delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. In an effort to control these problems, the Miller Creek Water Quality Project will target areas of 5 tons per acre or greater soil loss or with 0.5 tons per acre or greater sediment delivery rates. The assessment revealed these targeted priority lands make up 32% or 6,395 acres of the Miller Creek watershed. Priority lands include cropland, pasture land, timber, and sensitive riparian areas. It is the goal of this project to reduce sediment delivery by 70% on 60% or 3,837 acres of these priority lands. This will be accomplished through installation of strategically placed structural practices, rotational grazing systems, and buffer strips. These practices will reduce soil loss, reduce sediment delivery, improve water quality, and improve wildlife habitat in the watershed. Utilizing partnerships with NRCS and IDALS-DSC will be important in making this project successful. In addition to using matching funds from EQIP, WHIP, and CRP, the Monroe SWCD is committed to prioritizing local cost share funds through IFIP and REAP for use in the Miller Creek Watershed.
Resumo:
Cardiovascular failure and low flow states may arise in very different conditions from both cardiac and noncardiac causes. Systemic hemodynamic failure inevitably alters splanchnic blood flow but in an unpredictable way. Prolonged low splanchnic blood flow causes intestinal ischemia, increased mucosal permeability, endotoxemia, and distant organ failure. Mortality associated with intestinal ischemia is high. Why would enteral nutrition (EN) be desirable in these complex patients when parenteral nutrition could easily cover energy and substrate requirements? Metabolic, immune, and practical reasons justify the use of EN. In addition, continuous enteral feeding minimizes systemic and myocardial oxygen consumption in patients with congestive heart failure. Further, early feeding in critically ill mechanically ventilated patients has been shown to reduce mortality, particularly in the sickest patients. In a series of cardiac surgery patients with compromised hemodynamics, absorption has been maintained, and 1000-1200 kcal/d could be delivered by enteral feeding. Therefore, early EN in stabilized patients should be attempted, and can be carried out safely under close clinical monitoring, looking for signs of incipient intestinal ischemia. Energy delivery and balance should be monitored, and combined feeding considered when enteral feeds cannot be advanced to target within 4-6 days.
Resumo:
Miller Creek, a 19,926 acre watershed, is listed on the 2008 Section 303d Impaired Waters List. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to nutrient and sediment delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. The WIRB board provided implementation grant funds in 2010 for a three year project to treat targeted areas of 5 tons per acre or greater soil loss with an estimated reduction of 2,547 tons. As of December 1, 2012, with 95% of the funds allocated, the final results are estimated to provide a sediment delivery reduction of 4,500 tons and an estimated phosphorus reduction of 5,700 lbs per year. These accomplishments and the completion of the three year Miller Creek WIRB project represent "Phase I" of the SWCD's goals to treat the Miller Creek watershed. This application represents "Phase II" or the final phase of the Miller Creek water quality project. The Monroe SWCD plans to reduce sediment delivery by 70% on an additional 245 acres of priority land. This goal will be accomplished through installation of strategically placed structural practices, BMPs, and grazing systems. These practices will reduce soil loss, nutrient runoff, and sediment delivery as well as improve water quality and wildlife habitat in the watershed. Utilization of partnerships with NRCS and IDALS-DSC will continue to be an important part to the success of the project. Project goals will be achieved by utilizing matching funds from EQIP, and the Monroe SWCD has approved the use of District IFIP cost share funds specifically for use in the Miller Creek Watershed.
Resumo:
This study aimed to compare oxygen uptake ( V˙O2), hormone and plasma metabolite responses during the 30 min after submaximal incremental exercise (Incr) performed at the same relative/absolute exercise intensity and duration in lean (L) and obese (O) men. Eight L and 8 O men (BMI: 22.9±0.4; 37.2±1.8 kg · m(-2)) completed Incr and were then seated for 30 min. V˙O2 was monitored during the first 10 min and from the 25-30(th) minutes of recovery. Blood samples were drawn for the determination of hormone (catecholamines, insulin) and plasma metabolite (NEFA, glycerol) concentrations. Excess post-exercise oxygen consumption (EPOC) magnitude during the first 10 min was similar in O and in L (3.5±0.4; 3.4±0.3 liters, respectively, p=0.86). When normalized to percent change ( V˙O2END=100%), % V˙O2END during recovery was significantly higher from 90-120 s in O than in L (p≤0.04). There were no significant differences in catecholamines (p≥0.24), whereas insulin was significantly higher in O than in L during recovery (p=0.01). The time-course of glycerol was similar from 10-30 min of recovery (-42% for L; -41% for O, p=0.85), whereas significantly different patterns of NEFA were found from 10-30 min of recovery between groups (-18% for L; +8% for O, p=0.03). Despite similar EPOC, a difference in V˙O2 modulation between groups was observed, likely due to faster initial rates of V˙O2 decline in L than in O. The different patterns of NEFA between groups may suggest a lower NEFA reesterification during recovery in O, which was not involved in the rapid EPOC component.
Resumo:
White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.
Resumo:
Photoreceptors and retinal pigment epithelial cells (RPE) targeting remains challenging in ocular gene therapy. Viral gene transfer, the only method having reached clinical evaluation, still raises safety concerns when administered via subretinal injections. We have developed a novel transfection method in the adult rat, called suprachoroidal electrotransfer (ET), combining the administration of nonviral plasmid DNA into the suprachoroidal space with the application of an electrical field. Optimization of injection, electrical parameters and external electrodes geometry using a reporter plasmid, resulted in a large area of transfected tissues. Not only choroidal cells but also RPE, and potentially photoreceptors, were efficiently transduced for at least a month when using a cytomegalovirus (CMV) promoter. No ocular complications were recorded by angiographic, electroretinographic, and histological analyses, demonstrating that under selected conditions the procedure is devoid of side effects on the retina or the vasculature integrity. Moreover, a significant inhibition of laser induced-choroidal neovascularization (CNV) was achieved 15 days after transfection of a soluble vascular endothelial growth factor receptor-1 (sFlt-1)-encoding plasmid. This is the first nonviral gene transfer technique that is efficient for RPE targeting without inducing retinal detachment. This novel minimally invasive nonviral gene therapy method may open new prospects for human retinal therapies.
Resumo:
Systemic administration of cyclosporine A (CsA) is commonly used in the treatment of local ophthalmic conditions involving cytokines, such as corneal graft rejection, autoimmune uveitis and dry eye syndrome. Local administration is expected to avoid the various side effects associated with systemic delivery. However, the currently available systems using oils to deliver CsA topically are poorly tolerated and provide a low bioavailability. These difficulties may be overcome through formulations aimed at improving CsA water solubility (e.g. cyclodextrins), or those designed to facilitate tissue drug penetration using penetration enhancers. The use of colloidal carriers (micelles, emulsions, liposomes and nanoparticles) as well as the approach using hydrosoluble prodrugs of CsA have shown promising results. Solid devices such as shields and particles of collagen have been investigated to enhance retention time on the eye surface. Some of these topical formulations have shown efficacy in the treatment of extraocular diseases but were inefficient at reaching intraocular targets. Microspheres, implants and liposomes have been developed to be directly administered subconjunctivally or intravitreally in order to enhance CsA concentration in the vitreous. Although progress has been made, there is still room for improvement in CsA ocular application, as none of these formulations is ideal.
Resumo:
PURPOSE: To study VP22 light controlled delivery of antisense oligonucleotide (ODN) to ocular cells in vitro and in vivo. METHODS: The C-terminal half of VP22 was expressed in Escherichia coli, purified and mixed with 20 mer phosphorothioate oligonucleotides (ODNs) to form light sensitive complex particles (vectosomes). Uptake of vectosomes and light induced redistribution of ODNs in human choroid melanoma cells (OCM-1) and in human retinal pigment epithelial cells (ARPE-19) were studied by confocal and electron microscopy. The effect of vectosomes formed with an antisense ODN corresponding to the 3'-untranslated region of the human c-raf kinase gene on the viability and the proliferation of OCM-1 cells was assessed before and after illumination. Cells incubated with vectosomes formed with a mismatched ODN, a free antisense ODN or a free mismatched ODN served as controls. White light transscleral illumination was carried out 24 h after the intravitreal injection of vectosomes in rat eyes. The distribution of fluorescent vectosomes and free fluorescent ODN was evaluated on cryosections by fluorescence microscopy before, and 1 h after illumination. RESULTS: Overnight incubation of human OCM-1 and ARPE-19 cells with vectosomes lead to intracellular internalization of the vectosomes. When not illuminated, internalized vectosomes remained stable within the cell cytoplasm. Disruption of vectosomes and release of the complexed ODN was induced by illumination of the cultures with a cold white light or a laser beam. In vitro, up to 60% inhibition of OCM-1 cell proliferation was observed in illuminated cultures incubated with vectosomes formed with antisense c-raf ODN. No inhibitory effect on the OCM-1 cell proliferation was observed in the absence of illumination or when the cells are incubated with a free antisense c-raf ODN and illuminated. In vivo, 24 h after intravitreal injection, vectosomes were observed within the various retinal layers accumulating in the cytoplasm of RPE cells. Transscleral illumination of the injected eyes with a cold white light induced disruption of the vectosomes and a preferential localization of the "released" ODNs within the cell nuclei of the ganglion cell layer, the inner nuclear layer and the RPE cells. CONCLUSIONS: In vitro, VP22 light controlled delivery of ODNs to ocular cells nuclei was feasible using white light or laser illumination. In vivo, a single intravitreal injection of vectosomes, followed by transscleral illumination allowed for the delivery of free ODNs to retinal and RPE cells.
Resumo:
PURPOSE: To evaluate the safety and potential use of poly(lactic) acid (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as vectors for gene transfer to RPE cells. METHODS: Experiments were conducted with primary bovine RPE cells and with the ARPE-19 human RPE cell line. Rhodamine loaded NPs were used to study factors influencing the internalization process by the various RPE cells: concentrations of NPs, duration of contact time, stage of cell culture and ambient temperature. The extent of NPs internalization was evaluated by fluorescence and phase microscopy. Potential NP toxicity was measured by the trypan blue exclusion dye test and the MTT method. Green fluorescent protein (GFP) plasmid or red nuclear fluorescent protein (RNFP) plasmid were sequestered in NPs. The ability ot these "loaded" NPs to generate gene transfection and protein expression in RPE cells was assessed both in vivo and in vitro by fluorescence and confocal microscopy. RESULTS: The extent of NP internalization in cultured cells increases with their concentration reaching a plateau at 1 mg/ml and a contact time of up to 6 h. Temperature and culture stage did not influence the in vitro internalization process. No toxic effects on RPE cells could be detected when these were incubated with up to 4 mg/ml of NPs. In human and bovine RPE cells incubated with GFP loaded NPs, cytoplasmic green fluorescence was observed in 14+/-1.65% of the cultured cells. Incubation with RNFP loaded NPs yielded a nuclear red fluorescence in 18.9+/-1.6% of the cells. These percentage levels of expression initially detected after 48 h of incubation remained unchanged during the following 8 additional days in culture. No significant differences in the extent of cytoplasm or nuclear fluorescence expression were observed between bovine or human RPE cultured cells. In vivo, a preferential RNFP expression within the RPE cell layer was detected after intra vitreous injection of RNFP plasmid loaded NPs. CONCLUSIONS: The ability of PLGA NPs to sequester plasmids, their nontoxic characteristics, and rapid internalization enables gene transfer and expression in RPE cells. These findings may be of potential use when designing future gene therapy strategies for ocular diseases of the posterior segment.
Resumo:
PURPOSE: Pharmacologic modulation of wound healing after glaucoma filtering surgery remains a major clinical challenge in ophthalmology. Poly(ortho ester) (POE) is a bioerodible and biocompatible viscous polymer potentially useful as a sustained drug delivery system that allows the frequency of intraocular injections to be reduced. The purpose of this study was to determine the efficacy of POE containing a precise amount of 5-fluorouracil (5-FU) in an experimental model of filtering surgery in the rabbit. METHODS: Trabeculectomy was performed in pigmented rabbit eyes. An ointmentlike formulation of POE containing 1% wt/wt 5-FU was injected subconjunctivally at the site of surgery, during the procedure. Intraocular pressure (IOP), bleb persistence, and ocular inflammatory reaction were monitored until postoperative day 30. Quantitative analysis of 5-FU was performed in the anterior chamber. Histologic analysis was used to assess the appearance of the filtering fistula and the polymer's biocompatibility. RESULTS: The decrease in IOP from baseline and the persistence of the filtering bleb were significantly more marked in the 5-FU-treated eyes during postoperative days 9 through 28. Corneal toxicity triggered by 5-FU was significantly lower in the group that received 5-FU in POE compared with a 5-FU tamponade. Histopathologic evaluation showed that POE was well tolerated, and no fibrosis occurred in eyes treated with POE containing 5-FU. CONCLUSIONS: In this rabbit model of trabeculectomy, the formulation based on POE and containing a precise amount of 5-FU reduced IOP and prolonged bleb persistence in a way similar to the conventional method of a 5-FU tamponade, while significantly reducing 5-FU toxicity.
Resumo:
OBJECTIVE: To determine whether infusion line compliance contributes to irregular drug delivery during vertical displacement of syringe pumps. DESIGN: Five different commercially available infusion lines were studied at infusion rates of 0.5, 1.0, and 1.5 ml/h. Zero drug delivery time was measured after acute line loop formation (70 cm) using an electronic balance. Compliance of each infusion line was calculated using a pressure transducer and measurement of the occlusion release bolus at 300 mmHg occlusion pressure. Finally, the influence of infusion line compliance on drug delivery during acute lowering of the syringe pump was studied using low- and high-compliance infusion lines. RESULTS: Acute line loop formation resulted in zero drug delivery time from 5.1 +/- 1.5 to 44.0 +/- 6.8 s at flow rates of 0.5 ml/h. Increased flow rates significantly reduced loop-induced flow variability. A close correlation was found between zero drug delivery time and calculated infusion line compliance at 0.5 ml/h (linear regression R2 = 0.79). Lowering of the syringe pump 50 cm prolonged zero drug delivery time from 295.8 +/- 20.7 s with the low-compliance tube to 463.3 +/- 24.0 s with the high-compliance infusion line. CONCLUSIONS: Infusion line compliance contributes to irregular drug delivery associated with vertical displacement of syringe pumps. Siphoning of the infusion line during patient care should be avoided, and flow rates of 1 ml/h or higher are recommended. Low-compliance infusion lines are indicated whenever highly short-acting vasoactive drugs at low delivery rates are administered.
Resumo:
An overview of ocular implants with therapeutic application potentials is provided. Various types of implants can be used as slow release devices delivering locally the needed drug for an extended period of time. Thus, multiple periocular or intraocular injections of the drug can be circumvented and secondary complications minimized. The various compositions of polymers fulfilling specific delivery goals are described. Several of these implants are undergoing clinical trials while a few are already commercialized. Despite the paramount progress in design, safety and efficacy, the place of these implants in our clinical therapeutic arsenal remains limited. Miniaturization of the implants allowing for their direct injection without the need for a complicated surgery is a necessary development avenue. Particulate systems which can be engineered to target specifically certain cells or tissues are another promising alternative. For ocular diseases affecting the choroid and outer retina, transscleral or intrasscleral implants are gaining momentum.