901 resultados para no-fault divorce
Resumo:
A near-bottom geological and geophysical survey was conducted at the western intersection of the Siqueiros Transform Fault and the East Pacific Rise. Transform-fault shear appears to distort the east flank of the rise crest in an area north of the fracture zone. In ward-facing scarps trend 335° and do not parallel the regional axis of spreading. Small-scale scarps reveal a hummocky bathymetry. The center of spreading is not a central peak but rather a 20-40 m deep, 1 km wide valley superimposed upon an 8 km wide ridge-crest horst. Small-scale topography indicates widespread volcanic flows within the valley. Two 0.75 km wide blocks flank the central valley. Fault scarps are more dominant on the western flank. Their alignment shifts from directions intermediate to parallel to the regional axis of spreading (355°). A median ridge within the fracture zone has a fault-block topography similar to that of the East Pacific Rise to the north. Dominant eastward-facing scarps trending 335° are on the west flank. A central depression, 1 km wide and 30 m deep, separates the dominantly fault-block regime of the west from the smoother topography of the east flank. This ridge originated by uplift due to faulting as well as by volcanism. Detailed mapping was concentrated in a perched basin (Dante's Hole) at the intersection of the rise crest and the fracture zone. Structural features suggest that Dante's Hole is an area subject to extreme shear and tensional drag resulting from transition between non-rigid and rigid crustal behavior. Normal E-W crustal spreading is probably taking place well within the northern confines of the basin. Possible residual spreading of this isolated rise crest coupled with shear drag within the transform fault could explain the structural isolation of Dante's Hole from the remainder of the Siqueiros Transform Fault.
Resumo:
This letter presents an FPGA implementation of a fault-tolerant Hopfield NeuralNetwork (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non fault- tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design.
Resumo:
This study was developed under the ExxonMobil FC2 Alliance (Fundamental Controls on Flow in Carbonates). The authors wish to thank ExxonMobil Production Company and ExxonMobil Upstream Research Company for providing funding. The views in this article by Sherry L. Stafford are her own and not necessarily those of ExxonMobil. This research was supported by the Sedimentary Geology Research Group of the Generalitat de Catalunya (2014SGR251). We would like to thank Andrea Ceriani and Paola Ronchi for their critical and valuable reviews, and Associated Editor Piero Gianolla for the editorial work.
Resumo:
Peer reviewed
Resumo:
Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).
Resumo:
Peer reviewed
Resumo:
Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).
Resumo:
Acknowledgements: The authors would like to thank Total E&P and BG Group for project funding and support, and the Industry Technology Facilitator for facilitating the collaborative development (grant number 3322PSD). The authors would also like to express their gratitude to the Aberdeen Formation Evaluation Society and the College of Physical Sciences at the University of Aberdeen for partial financial support. Raymi Castilla (Total E&P), Fabrizio Agosta and Cathy Hollis are also thanked for their constructive comments and suggestions to improve the standard of this manuscript as are John Still and Colin Taylor (University of Aberdeen) for technical assistance in the laboratory. Piero Gianolla is thanked for his editorial handling of the manuscript.
Resumo:
Peer reviewed
Resumo:
ACKNOWLEDGMENT We are thankful to RTE for financial support of this project.
Resumo:
Postprint
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
The Sandcastles program has been utilized nationwide as a one-time group intervention to assist children of divorcing parents. For several years Miami-Dade family court services mandated participation in the program for divorcing or separating families. Currently, there is a paucity of research and evaluation to ascertain the efficacy of the program. This symposium will provide details and discussion regarding the planning and process used to establish an evaluation plan to assess the effectiveness of the Sandcastles program for families in MiamiDade County. Any preliminary outcomes available at the time of the symposium will also be shared.