974 resultados para nickel, cobalt and copper determination
Resumo:
Työssä tutkittiin laboratorio-olosuhteissa germaniumin talteenottoa happamista hydrometallurgisista sulfaattiliuoksista käyttäen kaupallisia ioninvaihtohartseja. Germaniumin talteenottoa tutkittiin sekä tasapaino- että kolonnikokein syöttöliuoksista joiden pH oli alueella 0,8–3,0. Tutkituista hartseista parhaiten germanium voitiin erottaa käyttäen emäsmuotoista N-metyyli-D-glukamiini-tyyppistä ioninvaihtohartsia (esim. Rohm & Haasin IRA-743). Germaniumille määritettiin adsorptioisotermit tasapainokokein sekä emäs- että happomuotoisilla hartseilla. Adsorptioisotermien perusteella parhaiten germa-niumia adsorboi emäsmuotoinen IRA-743-hartsi kun liuoksen alku-pH oli tutkitun alueen korkein. Lämpötilassa 25 °C kapasiteetti oli 114 mg Ge/g. Tasapainokokein määritettiin emäsmuotoisilla hartseilla germaniumin lisäksi myös kuparia ja kobolttia sisältävillä liuoksilla Ge:n jakaantumisvakiot sekä erotustekijät Ge/Cu ja Ge/Co. Havaittiin, että IRA-743:lla alku-pH:ssa 3,0 Ge:n jakaantumisvakiot sekä erotustekijät Ge/Cu ja Ge/Co olivat selvästi suuremmat kuin muilla tutkituilla hartseilla. Arseenin, nikkelin, sinkin ja rauta(III):n adsorboitumista emäsmuotoiseen IRA-743:een tutkittiin monimetallisella liuoksella syöttöliuoksen pH:n ollessa alueella 1,4–3,6. Kokeissa havaittiin, että hartsi adsorboi hieman Ni:a ja Zn:a tasapaino-pH:n ollessa yli 5,5. Arseenia ei tutkitulla pH-alueella havaittu adsorboituvan. Lisäksi huomattiin, että rauta alkaa saostua pH:n ollessa hieman alle kolme. Kolonnikokeissa havaittiin, että emäsmuotoinen IRA-743-hartsi toimii hyvin germaniumin talteenotossa myös kolonnissa. Pelkästään germaniumia ja kobolttia sisältäneellä liuoksella hartsin dynaamiseksi kapasiteetiksi saatiin 54 mg Ge/g. Germaniumin eluointi IRA-743:sta onnistui parhaiten 0,5 M H2SO4:lla. Kolonnikokeita IRA-743:lla ajettiin myös monimetallisilla liuoksilla, mutta silloin havaittiin hartsin kapasiteetin pienenevän hartsin myrkyttymisen takia.
Resumo:
The simultaneous determination of cobalt and nickel is a classical analytical problem. A great number of reagents associated with several techniques of analysis have been applied to achieve this determination. In this review 117 references, which appeared between 1996-1980, are described and classified according to the technique applied.
Resumo:
Työssä tutkittiin sinkin uutossa käytettävän di(2-etyyliheksyyli)fosforihappo (D2EHPA) -uuttoreagenssin faasikäyttäytymistä ja miten laimentimen koostumus, lämpötila ja orgaanisen faasin sinkkipitoisuus vaikuttavat faasitasapainoon. Laimentimen vaikutuksen havaittiin olevan pientä, kun taas lämpötilan nostaminen yli huoneenlämpötilan leventää faasidiagrammin yksifaasialuetta. Pienet orgaanisen faasin sinkkipitoisuudet eivät juuri vaikuta faasitasapainoon. Sinkin ja D2EHPA:n moolisuhteen ollessa välillä 0,1–0,2 kompleksin rakenne ilmeisesti muuttuu. Sinkkipitoisuuden kasvaessa yksifaasialue muodostuu pienemmillä ammoniakkimäärillä. Suurilla orgaanisen faasin sinkkipitoisuuksilla ja ammoniakkimäärillä muodostuu orgaanisen faasin ja vesifaasin välille kolmas nestefaasi. D2EHPA:n (40 p %) vesipitoisuuden ja viskositeetin pH riippuvuutta tutkittiin, kun laimentimena oli alifaattinen hiilivetyliuotin. Nostettaessa pH yli 3,5:n uuttoreagenssi alkoi muodostaa käänteismisellejä, jolloin orgaanisen faasin vesipitoisuus ja viskositeetti kasvoivat eksponentiaalisesti. Sinkin mukana uuttautuu epäpuhtauksia kuten Al3+, Co2+, Cu2+, Na+, Ni2+, Cl- ja F-. Takaisinuuton kautta epäpuhtaudet joutuvat talteenottoelektrolyysiin, jossa ne voivat vaikuttaa tuotteen laatuun ja laskea virtahyötysuhdetta. Tarkoituksena oli tutkia väheneekö epäpuhtauksien myötäuuttautuminen jollakin tietyllä sinkin latausasteella. Fluoridin ja kuparin uuttautumisen havaittiin vähenevän vasta, kun sinkin pitoisuus orgaanisessa faasissa oli yli 20 g/L lämpötilasta riippumatta. Fluoridi uuttautuu mahdollisesti alumiinikompleksina ja/tai fluorihappona. Koboltin ja nikkelin myötäuuttautumisen havaittiin vähenevän, kun sinkin latausaste oli yli 10 g/L. Natrium ja kloridi eivät myötäuuttautuneet.
Resumo:
The silica gel was obtained from sand and its surface was modified with POCl3 to produce Si-Cl bonds on the silica surface. Ethylenediamine was covalently bonded onto the chlorinated silica surface. The adsorption of the chlorides of divalent cobalt, nickel and copper was qualitatively studied to show that the bonding of ethylenediamine onto the silica gel surface produces a solid base capable of chelating metal ions from solution. The experiments illustrate the extraction of silica gel, its reactivity, the development of modified surfaces and its application in removing metal ions from water and are deigned for undergraduate inorganic chemistry laboratories.
Resumo:
The amphiphilic nature of metal extractants causes the formation of micelles and other microscopic aggregates when in contact with water and an organic diluent. These phenomena and their effects on metal extraction were studied using carboxylic acid (Versatic 10) and organophosphorus acid (Cyanex 272) based extractants. Special emphasis was laid on the study of phase behaviour in a pre neutralisation stage when the extractant is transformed to a sodium or ammonium salt form. The pre neutralised extractants were used to extract nickel and to separate cobalt and nickel. Phase diagrams corresponding to the pre neutralisation stage in a metal extraction process were determined. The maximal solubilisation of the components in the system water(NH3)/extractant/isooctane takes place when the molar ratio between the ammonia salt form and the free form of the extractant is 0.5 for the carboxylic acid and 1 for the organophosphorus acid extractant. These values correspond to the complex stoichiometry of NH4A•HA and NIi4A, respectively. When such a solution is contacted with water a microemulsion is formed. If the aqueous phase contains also metal ions (e.g. Ni²+), complexation will take place on the microscopic interface of the micellar aggregates. Experimental evidence showing that the initial stage of nickel extraction with pre neutralised Versatic 10 is a fast pseudohomogeneous reaction was obtained. About 90% of the metal were extracted in the first 15 s after the initial contact. For nickel extraction with pre neutralised Versatic 10 it was found that the highest metal loading and the lowest residual ammonia and water contents in the organic phase are achieved when the feeds are balanced so that the stoichiometry is 2NH4+(org) = Nit2+(aq). In the case of Co/Ni separation using pre neutralised Cyanex 272 the highest separation is achieved when the Co/extractant molar ratio in the feeds is 1 : 4 and at the same time the optimal degree of neutralisation of the Cyanex 272 is about 50%. The adsorption of the extractants on solid surfaces may cause accumulation of solid fine particles at the interface between the aqueous and organic phases in metal extraction processes. Copper extraction processes are known to suffer of this problem. Experiments were carried out using model silica and mica particles. It was found that high copper loading, aromacity of the diluent, modification agents and the presence of aqueous phase decrease the adsorption of the hydroxyoxime on silica surfaces.
Indirect spectrophotometric method for determination of captopril using Cr(VI) and diphenylcarbazide
Resumo:
A spectrophotometric method for the indirect determination of captopril (CP) in pharmaceutical formulations is proposed. The proposed procedure is based on the oxidation of captopril by potassium dichromate and the determination excess oxidant on the basis of its reaction with diphenylcarbazide (DPC). Under the optimum conditions, a good linear relationship (r = 0.9997) was obtained in the range of 0.08-3.5 µg mL-1. The assay limits of detection and quantitation were 0.024 and 0.08 µg mL-1, respectively. The results obtained for captopril determination in pharmaceuticals using the proposed method and those obtained with the US Pharmacopoeia method were in good agreement at the 95% confidence level.
Resumo:
A new analytical approach was developed involving cloud point extraction (CPE) and spectrofluorimetric determination of triamterene (TM) in biological fluids. A urine or plasma sample was prepared and adjusted to pH 7, then TM was quickly extracted using CPE, using 0.05% (w/v) of Triton X-114 as the extractant. The main factors that affected the extraction efficiency (the pH of the sample, the Triton X-114 concentration, the addition of salt, the extraction time and temperature, and the centrifugation time and speed) were studied and optimized. The method gave calibration curves for TM with good linearities and correlation coefficients (r) higher than 0.99. The method showed good precision and accuracy, with intra- and inter-assay precisions of less than 8.50% at all concentrations. Standard addition recovery tests were carried out, and the recoveries ranged from 94.7% to 114%. The limits of detection and quantification were 3.90 and 11.7 µg L-1, respectively, for urine and 5.80 and 18.0 µg L-1, respectively, for plasma. The newly developed, environmentally friendly method was successfully used to extract and determine TM in human urine samples.
Resumo:
In this study, a procedure is developed for cloud point extraction of Pd(II) and Rh(III) ions in aqueous solution using Span 80 (non-ionic surfactant) prior to their determination by flame atomic absorption spectroscopy. This method is based on the extraction of Pd(II) and Rh(III) ions at a pH of 10 using Span 80 with no chelating agent. We investigated the effect of various parameters on the recovery of the analyte ions, including pH, equilibration temperature and time, concentration of Span 80, and ionic strength. Under the best experimental conditions, the limits of detection based on 3Sb for Pd(II) and Rh(III) ions were 1.3 and 1.2 ng mL-1, respectively. Seven replicate determinations of a mixture of 0.5 µg mL-1 palladium and rhodium ions gave a mean absorbance of 0.058 and 0.053 with relative standard deviations of 1.8 and 1.6%, respectively. The developed method was successfully applied to the extraction and determination of the palladium and rhodium ions in road dust and standard samples and satisfactory results were obtained.
Resumo:
Carbon monoxide was detected and determined by a piezoelectric quartz crystal sensor coated with nickel(II)-phthalocyanine 50 % (v/v) solution in glycerine. Studies on the effect of temperature, flow rate, and some possible interferents were carried out. Calibration curves, sensor stability (lifetime) and the precision of measurements were also verified. The resulting selectivity is probably due to the coordinative binding between the electronically unsatured metal complexes and the analyte. The analytical curve is linear in the concentration range 0.10 to 1.0 % (v/v).
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation, and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the Programme when assessing the effects of the emissions from the Pechenganikel mining and metallurgical industry (Kola GMK). The Metallurgic Production Renovation Programme was implemented by OJSC Kola GMK to reduce emissions of sulphur and heavy metal concentrated dust. However, the expectations for the reduction in emissions from the smelter in the settlement Nikel were not realized. Nevertheless, Kola GMK has found that the modernization programme’s measures do not provide the planned reductions of sulfur dioxide emissions. In this report, temporal trends in water chemistry during 2000–2009 are examined on the basis of the data gathered from Lake Inari, River Pasvik and directly connected lakes, as well as from 26 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse, and the small lakes and streams which are not directly linked to the Pasvik watercourse, only receive atmospheric pollution. The data obtained confirms the ongoing pollution of the river and water system. Copper (Cu), nickel (Ni) and sulphates are the main pollution components. The highest levels were observed close to the smelters. The most polluted water source of the basin is the River Kolosjoki, as it directly receives the sewage discharge from the smelters and the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentrations of metals and sulphates in the River Pasvik are higher downstream from the Kuetsjarvi Lake. There has been no fall in the concentrations of pollutants in Pasvik watercourse over the last 10 years. Ongoing recovery from acidification has been evident in the small lakes of the Jarfjord and Vätsäri areas during the 2000s. The buffering capacity of these lakes has improved and the pH has increased. The reason for this recovery is that sulphate deposition has decreased, which is also evident in the water quality. However, concentrations of some metals, especially Ni and Cu, have risen during the 2000s. Ni concentrations have increased in all three areas, and Cu concentrations in the Pechenganickel and Jarfjord areas, which are located closer to the smelters. Emission levels of Ni and Cu did not fall during 2000s. In fact, the emission levels of Ni compounds even increased compared to the 1990s.
Improving the competitiveness of electrolytic Zinc process by chemical reaction engineering approach
Resumo:
This doctoral thesis describes the development work performed on the leachand purification sections in the electrolytic zinc plant in Kokkola to increase the efficiency in these two stages, and thus the competitiveness of the plant. Since metallic zinc is a typical bulk product, the improvement of the competitiveness of a plant was mostly an issue of decreasing unit costs. The problems in the leaching were low recovery of valuable metals from raw materials, and that the available technology offered complicated and expensive processes to overcome this problem. In the purification, the main problem was consumption of zinc powder - up to four to six times the stoichiometric demand. This reduced the capacity of the plant as this zinc is re-circulated through the electrolysis, which is the absolute bottleneck in a zinc plant. Low selectivity gave low-grade and low-value precipitates for further processing to metallic copper, cadmium, cobalt and nickel. Knowledge of the underlying chemistry was poor and process interruptions causing losses of zinc production were frequent. Studies on leaching comprised the kinetics of ferrite leaching and jarosite precipitation, as well as the stability of jarosite in acidic plant solutions. A breakthrough came with the finding that jarosite could precipitate under conditions where ferrite would leach satisfactorily. Based on this discovery, a one-step process for the treatment of ferrite was developed. In the plant, the new process almost doubled the recovery of zinc from ferrite in the same equipment as the two-step jarosite process was operated in at that time. In a later expansion of the plant, investment savings were substantial compared to other technologies available. In the solution purification, the key finding was that Co, Ni, and Cu formed specific arsenides in the “hot arsenic zinc dust” step. This was utilized for the development of a three-step purification stage based on fluidized bed technology in all three steps, i.e. removal of Cu, Co and Cd. Both precipitation rates and selectivity increased, which strongly decreased the zinc powder consumption through a substantially suppressed hydrogen gas evolution. Better selectivity improved the value of the precipitates: cadmium, which caused environmental problems in the copper smelter, was reduced from 1-3% reported normally down to 0.05 %, and a cobalt cake with 15 % Co was easily produced in laboratory experiments in the cobalt removal. The zinc powder consumption in the plant for a solution containing Cu, Co, Ni and Cd (1000, 25, 30 and 350 mg/l, respectively), was around 1.8 g/l; i.e. only 1.4 times the stoichiometric demand – or, about 60% saving in powder consumption. Two processes for direct leaching of the concentrate under atmospheric conditions were developed, one of which was implemented in the Kokkola zinc plant. Compared to the existing pressure leach technology, savings were obtained mostly in investment. The scientific basis for the most important processes and process improvements is given in the doctoral thesis. This includes mathematical modeling and thermodynamic evaluation of experimental results and hypotheses developed. Five of the processes developed in this research and development program were implemented in the plant and are still operated. Even though these processes were developed with the focus on the plant in Kokkola, they can also be implemented at low cost in most of the zinc plants globally, and have thus a great significance in the development of the electrolytic zinc process in general.
Resumo:
The aims of this study were to evaluate the effectiveness of diquat, copper hydroxide, copper oxychloride and their associations diquat + 0.1% copper oxychloride and diquat + 0.1% copper hydroxide to control Cerathophyllum demersum. Therefore, the concentrations used were 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5 mg L-1 oxychloride and copper hydroxide and 0.2, 0.4, 0.8 and 1.2 mg L-1 diquat and their associations with 0.1% copper oxychloride and 0.1% copper and a control hydroxide. The experimental design was completely randomized with ten replications for 45 days. For evaluation we used a scale of 0-100% control of notes and rated the weight (g) and length (cm) of pointers at the end of the trial period. Diquat showed 100% efficacy at 30 DAA, associations in 21 DAA and copper sources promoted regrowth of C. demersum. Diquat and its associations were more effective in controlling C. demersum. The use of herbicide in combination with a copper source is more efficient for the control of submerged weeds because it potentiates the effect of the herbicide in weed control
Resumo:
The first experiments on sex determination in bees began with Dzierzon, Meves, Nachtsheim, Paulcke, Petrunkewitsch, Manning. Whiting, (1943) found multiple alleles in Bracon xo that are the Rosetta stone of sex determination in Hymenoptera. Whiting also discovered that some species of microhymenoptera do not possess xo sex alleles. Therefore, Hymenoptera apparently presents two types of sex determination superimposed on haplodiploidy. In the panmictic groups hemizygous (xo1, xo2,... xon) and homozygous (xo1xo1, xo2xo2... xonxon) are males while heterozygous (xo1xo2, ... xon-1xon) are females. There is no such series of xon in endogamous Hymenoptera, since the constant elimination of diploid males would be damaging to the population and the mutation of xo to xon would be quickly eliminated. Besides the Whiting hypothesis, four others are discussed. The new hypothesis of genomic imprinting, of Beukeboom, is eliminated since: a) spermatozoa that develop within the egg produce male tissue; b) telitokous parthenogenesis due to the fusion of two haploid cells develop into females; c) last instar larvae treated with juvenile hormone become queens. The Cunha and Kerr hypothesis (female determining genes are totally or partially additive and male determination is totally or partially nonadditive) explains all known cases. The xo is a female determining gene. Sex determination in social bees led to the gradual evolution of two systems of caste determination: one in which queens and workers are similar and males are very different (Apinae), and another in which workers and males are very similar and both very different from the queens (Meliponinae). This second system in stingless bees implies that many of the mutations that improve worker capacities also affect the males that will carry out some activities that in Apis are clearly female ones. Ten of these activities are described.
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the programme when assessing the effects of the emissions from the Pechenganikel mining end metallurgical industry (Kola GMK). In this report temporal trends of the water chemistry during 2000–2013 are examined on the basis of the data gathered from lake Inari, River Pasvik and directly connected lakes, Lake Kuetsjarvi and 25 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse and the small lakes and streams which are not directly linked to the Pasvik Watercourse only receive atmospheric pollution. Lake Inari is free of direct emissions from the Pechenganikel and the water quality is excellent. In River Pasvik and the directly connected lakes copper, nickel, and sulphates are the main pollutants. The most polluted water body is the Kolosjoki River as well as the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentration of metals and sulphates in the water notably increases downstream the river lower Lake Kuetsjarvi. In Lake Kuetsjarvi copper and nickel concentrations are clearly elevated and have changed insignificantly in the last years of the research period. In the small border area lakes recovery from acidification in Vätsäri and Jarfjord is evident. Nickel and copper oncentrations have fluctuated but remained on clearly elevated level in Jarfjord and Pechenga. Copper concentrations have been slightly rising in the recent years. In Pechenga area nickel concentrations during the last four monitoring years are decreasing in some places but the regional trend through whole time series is still positive.
Resumo:
Tea has been considered a medicine and a healthy beverage since ancient times, but recently it has received a great deal of attention because of its antioxidant properties. Green tea polyphenols have demonstrated to be an effective chemopreventive agent. Recently, investigators have found that EGCG, one of the green tea catechins, could have anti-HIV effects when bound to CD4 receptor. Many factors can constitute important influences on the composition of tea, such as species, season, age of the leaf, climate, and horticultural practices (soil, water, minerals, fertilizers). This paper presents an HPLC analytical methodology development, using column RP-18 and mobile phase composed by water, acetonitrile, methanol, ethyl acetate, glacial acetic acid (89:6:1:3:1 v/v/v/v/v) for simultaneous determination and quantification of caffeine (CAF), catechin (C), epicatechin (EC) and epigallocatechin gallate (EGCG) in samples of Camellia sinensis (green tea) grown in Brazil and harvested in spring, in summer and in autumn, in comparison to Brazilian black tea, to samples of Japanese and Chinese green tea and to two standardized dry extracts of green tea. The method has been statistically evaluated and has proved to be adequate to qualitative and quantitative determination of the samples.