948 resultados para multiobjective programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opportunities offered by high performance computing provide a significant degree of promise in the enhancement of the performance of real-time flood forecasting systems. In this paper, a real-time framework for probabilistic flood forecasting through data assimilation is presented. The distributed rainfall-runoff real-time interactive basin simulator (RIBS) model is selected to simulate the hydrological process in the basin. Although the RIBS model is deterministic, it is run in a probabilistic way through the results of calibration developed in a previous work performed by the authors that identifies the probability distribution functions that best characterise the most relevant model parameters. Adaptive techniques improve the result of flood forecasts because the model can be adapted to observations in real time as new information is available. The new adaptive forecast model based on genetic programming as a data assimilation technique is compared with the previously developed flood forecast model based on the calibration results. Both models are probabilistic as they generate an ensemble of hydrographs, taking the different uncertainties inherent in any forecast process into account. The Manzanares River basin was selected as a case study, with the process being computationally intensive as it requires simulation of many replicas of the ensemble in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In this paper, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. Finally, a Genetic Algorithm (GA) multiobjective optimization is applied to the design space. The result is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget, which gives a useful insight to the design team at the early phases of the design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the sustainability of farm irrigation systems in the Cébalat district in northern Tunisia. It addressed the challenging topic of sustainable agriculture through a bio-economic approach linking a biophysical model to an economic optimisation model. A crop growth simulation model (CropSyst) was used to build a database to determine the relationships between agricultural practices, crop yields and environmental effects (salt accumulation in soil and leaching of nitrates) in a context of high climatic variability. The database was then fed into a recursive stochastic model set for a 10-year plan that allowed analysing the effects of cropping patterns on farm income, salt accumulation and nitrate leaching. We assumed that the long-term sustainability of soil productivity might be in conflict with farm profitability in the short-term. Assuming a discount rate of 10% (for the base scenario), the model closely reproduced the current system and allowed to predict the degradation of soil quality due to long-term salt accumulation. The results showed that there was more accumulation of salt in the soil for the base scenario than for the alternative scenario (discount rate of 0%). This result was induced by applying a higher quantity of water per hectare for the alternative as compared to a base scenario. The results also showed that nitrogen leaching is very low for the two discount rates and all climate scenarios. In conclusion, the results show that the difference in farm income between the alternative and base scenarios increases over time to attain 45% after 10 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El punto de vista de muchas otras aplicaciones que modifican las reglas de computación. En segundo lugar, y una vez generalizado el concepto de independencia, es necesario realizar un estudio exhaustivo de la efectividad de las herramientas de análisis en la tarea de la paralelizacion automática. Los resultados obtenidos de dicha evaluación permiten asegurar de forma empírica que la utilización de analizadores globales en la tarea de la paralelizacion automática es vital para la consecución de una paralelizarían efectiva. Por último, a la luz de los buenos resultados obtenidos sobre la efectividad de los analizadores de flujo globales basados en la interpretación abstracta, se presenta la generalización de las herramientas de análisis al contexto de los lenguajes lógicos restricciones y planificación dinámica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las pruebas de software (Testing) son en la actualidad la técnica más utilizada para la validación y la evaluación de la calidad de un programa. El testing está integrado en todas las metodologías prácticas de desarrollo de software y juega un papel crucial en el éxito de cualquier proyecto de software. Desde las unidades de código más pequeñas a los componentes más complejos, su integración en un sistema de software y su despliegue a producción, todas las piezas de un producto de software deben ser probadas a fondo antes de que el producto de software pueda ser liberado a un entorno de producción. La mayor limitación del testing de software es que continúa siendo un conjunto de tareas manuales, representando una buena parte del coste total de desarrollo. En este escenario, la automatización resulta fundamental para aliviar estos altos costes. La generación automática de casos de pruebas (TCG, del inglés test case generation) es el proceso de generar automáticamente casos de prueba que logren un alto recubrimiento del programa. Entre la gran variedad de enfoques hacia la TCG, esta tesis se centra en un enfoque estructural de caja blanca, y más concretamente en una de las técnicas más utilizadas actualmente, la ejecución simbólica. En ejecución simbólica, el programa bajo pruebas es ejecutado con expresiones simbólicas como argumentos de entrada en lugar de valores concretos. Esta tesis se basa en un marco general para la generación automática de casos de prueba dirigido a programas imperativos orientados a objetos (Java, por ejemplo) y basado en programación lógica con restricciones (CLP, del inglés constraint logic programming). En este marco general, el programa imperativo bajo pruebas es primeramente traducido a un programa CLP equivalente, y luego dicho programa CLP es ejecutado simbólicamente utilizando los mecanismos de evaluación estándar de CLP, extendidos con operaciones especiales para el tratamiento de estructuras de datos dinámicas. Mejorar la escalabilidad y la eficiencia de la ejecución simbólica constituye un reto muy importante. Es bien sabido que la ejecución simbólica resulta impracticable debido al gran número de caminos de ejecución que deben ser explorados y a tamaño de las restricciones que se deben manipular. Además, la generación de casos de prueba mediante ejecución simbólica tiende a producir un número innecesariamente grande de casos de prueba cuando es aplicada a programas de tamaño medio o grande. Las contribuciones de esta tesis pueden ser resumidas como sigue. (1) Se desarrolla un enfoque composicional basado en CLP para la generación de casos de prueba, el cual busca aliviar el problema de la explosión de caminos interprocedimiento analizando de forma separada cada componente (p.ej. método) del programa bajo pruebas, almacenando los resultados y reutilizándolos incrementalmente hasta obtener resultados para el programa completo. También se ha desarrollado un enfoque composicional basado en especialización de programas (evaluación parcial) para la herramienta de ejecución simbólica Symbolic PathFinder (SPF). (2) Se propone una metodología para usar información del consumo de recursos del programa bajo pruebas para guiar la ejecución simbólica hacia aquellas partes del programa que satisfacen una determinada política de recursos, evitando la exploración de aquellas partes del programa que violan dicha política. (3) Se propone una metodología genérica para guiar la ejecución simbólica hacia las partes más interesantes del programa, la cual utiliza abstracciones como generadores de trazas para guiar la ejecución de acuerdo a criterios de selección estructurales. (4) Se propone un nuevo resolutor de restricciones, el cual maneja eficientemente restricciones sobre el uso de la memoria dinámica global (heap) durante ejecución simbólica, el cual mejora considerablemente el rendimiento de la técnica estándar utilizada para este propósito, la \lazy initialization". (5) Todas las técnicas propuestas han sido implementadas en el sistema PET (el enfoque composicional ha sido también implementado en la herramienta SPF). Mediante evaluación experimental se ha confirmado que todas ellas mejoran considerablemente la escalabilidad y eficiencia de la ejecución simbólica y la generación de casos de prueba. ABSTRACT Testing is nowadays the most used technique to validate software and assess its quality. It is integrated into all practical software development methodologies and plays a crucial role towards the success of any software project. From the smallest units of code to the most complex components and their integration into a software system and later deployment; all pieces of a software product must be tested thoroughly before a software product can be released. The main limitation of software testing is that it remains a mostly manual task, representing a large fraction of the total development cost. In this scenario, test automation is paramount to alleviate such high costs. Test case generation (TCG) is the process of automatically generating test inputs that achieve high coverage of the system under test. Among a wide variety of approaches to TCG, this thesis focuses on structural (white-box) TCG, where one of the most successful enabling techniques is symbolic execution. In symbolic execution, the program under test is executed with its input arguments being symbolic expressions rather than concrete values. This thesis relies on a previously developed constraint-based TCG framework for imperative object-oriented programs (e.g., Java), in which the imperative program under test is first translated into an equivalent constraint logic program, and then such translated program is symbolically executed by relying on standard evaluation mechanisms of Constraint Logic Programming (CLP), extended with special treatment for dynamically allocated data structures. Improving the scalability and efficiency of symbolic execution constitutes a major challenge. It is well known that symbolic execution quickly becomes impractical due to the large number of paths that must be explored and the size of the constraints that must be handled. Moreover, symbolic execution-based TCG tends to produce an unnecessarily large number of test cases when applied to medium or large programs. The contributions of this dissertation can be summarized as follows. (1) A compositional approach to CLP-based TCG is developed which overcomes the inter-procedural path explosion by separately analyzing each component (method) in a program under test, stowing the results as method summaries and incrementally reusing them to obtain whole-program results. A similar compositional strategy that relies on program specialization is also developed for the state-of-the-art symbolic execution tool Symbolic PathFinder (SPF). (2) Resource-driven TCG is proposed as a methodology to use resource consumption information to drive symbolic execution towards those parts of the program under test that comply with a user-provided resource policy, avoiding the exploration of those parts of the program that violate such policy. (3) A generic methodology to guide symbolic execution towards the most interesting parts of a program is proposed, which uses abstractions as oracles to steer symbolic execution through those parts of the program under test that interest the programmer/tester most. (4) A new heap-constraint solver is proposed, which efficiently handles heap-related constraints and aliasing of references during symbolic execution and greatly outperforms the state-of-the-art standard technique known as lazy initialization. (5) All techniques above have been implemented in the PET system (and some of them in the SPF tool). Experimental evaluation has confirmed that they considerably help towards a more scalable and efficient symbolic execution and TCG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic grading of programming assignments is an important topic in academic research. It aims at improving the level of feedback given to students and optimizing the professor time. Several researches have reported the development of software tools to support this process. Then, it is helpfulto get a quickly and good sight about their key features. This paper reviews an ample set of tools forautomatic grading of programming assignments. They are divided in those most important mature tools, which have remarkable features; and those built recently, with new features. The review includes the definition and description of key features e.g. supported languages, used technology, infrastructure, etc. The two kinds of tools allow making a temporal comparative analysis. This analysis infrastructure, etc. The two kinds of tools allow making a temporal comparative analysis. This analysis shows good improvements in this research field, these include security, more language support, plagiarism detection, etc. On the other hand, the lack of a grading model for assignments is identified as an important gap in the reviewed tools. Thus, a characterization of evaluation metrics to grade programming assignments is provided as first step to get a model. Finally new paths in this research field are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate generating complete and playable card games using evolutionary algorithms. Card games are represented in a previously devised card game description language, a context-free grammar. The syntax of this language allows us to use grammar-guided genetic programming. Candidate card games are evaluated through a cascading evaluation function, a multi-step process where games with undesired properties are progressively weeded out. Three representa- tive examples of generated games are analysed. We observed that these games are reasonably balanced and have skill ele- ments, they are not yet entertaining for human players. The particular shortcomings of the examples are discussed in re- gard to the generative process to be able to generate quality games

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present our research into self-organizing building algorithms. This idea of self-organization of animal/plants behaviour interests researchers to explore the mechanisms required for this emergent phenomena and try to apply them in other domains. We were able to implement a typical construction algorithm in a 3D simulation environment and reproduce the results of previous research in the area. LSystems, morphogenetic programming and wasp nest building are explained in order to understand self-organizing models. We proposed Grammatical swarm as a good tool to optimize building structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for formulating and algorithmically solving the equations of finite element problems is presented. The method starts with a parametric partition of the domain in juxtaposed strips that permits sweeping the whole region by a sequential addition (or removal) of adjacent strips. The solution of the difference equations constructed over that grid proceeds along with the addition removal of strips in a manner resembling the transfer matrix approach, except that different rules of composition that lead to numerically stable algorithms are used for the stiffness matrices of the strips. Dynamic programming and invariant imbedding ideas underlie the construction of such rules of composition. Among other features of interest, the present methodology provides to some extent the analyst's control over the type and quantity of data to be computed. In particular, the one-sweep method presented in Section 9, with no apparent counterpart in standard methods, appears to be very efficient insofar as time and storage is concerned. The paper ends with the presentation of a numerical example

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to traditional push-based protocols, adaptive streaming techniques like Dynamic Adaptive Streaming over HTTP (DASH) fix attention on the client, who dynamically requests different-quality portions of the content to cope with a limited and variable bandwidth but aiming at maximizing the quality perceived by the user. Since DASH adaptation logic at the client is not covered by the standard, we propose a solution based on Stochastic Dynamic Programming (SDP) techniques to find the optimal request policies that guarantee the users' Quality of Experience (QoE). Our algorithm is evaluated in a simulated streaming session and is compared with other adaptation approaches. The results show that our proposal outperforms them in terms of QoE, requesting higher qualities on average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this work is to describe the case of an online Java Programming course for engineering students to learn computer programming and to practice other non-technicalabilities: online training, self-assessment, teamwork and use of foreign languages. It is important that students develop confidence and competence in these skills, which will be required later in their professional tasks and/or in other engineering courses (life-long learning). Furthermore, this paper presents the pedagogical methodology, the results drawn from this experience and an objective performance comparison with another conventional (face-to-face) Java course.