885 resultados para multicolor displays
Resumo:
Abstract: The paired oviducal glands of immature and mature females of Mustelus schmitti were examined macro and microscopically. Findings indicate that these glands possessed the same zonation as in most chondrichthyans from anterior to posterior: club, papillary, baffle and terminal zones. The whole gland is composed by simple tubular glands that connect with transverse grooves all along the organ. The club zone presents a typical indian club shape with a simple columnar and ciliated epithelium including secretory cells PAS (+) and AB (+). The papillary zone is characterized by lamella forming small and long cones in numbers of three. The epithelium of this zone contains ciliated cells with apical nuclei and secretory cells with basal nuclei that stain AB (+)The baffle zone consists of apically flattened lamellae alternating with spinnerets which are small projections disposed by both sides of the plateau. This whole structure is present in number of 8 or 9 units. A simple columnar ciliated epithelium covers the plateau and spinnerets and no AB or PAS staining is observed. The epithelium of the terminal zone is PAS (-) and AB (+), and elongated tubules, that run adjacent to the baffle zone are the site where groups of spermatozoa are clearly observed in the lumen. The epithelium of the sperm storage tubules do not stain with any of the dyes tested. Sperm was also observed in the baffle zone, presumably in its way to the fecundation in the oviduct because it displays no aggregation pattern and was between the folds of the epithelium. By scanning electron microscopy sperm was observed in the club and baffle zones in a gland which belonged to a pregnant female.
Resumo:
Production machines for next generation LSIs such as 4G-DRAMs and for large liquid crystal displays such as 0.5mx0.5m size, and information equipment such as magnetic hard disks and DVDs must have the positioning accuracy of a nano-meter order. To realize such a high degree of the positioning accuracy, not only precision machine elements and mechanisms but also high precision sensors, actuators and controller design techniques becomes crucial. This paper introduces recent topics of precision positioning and motion control technology in Japan.
Resumo:
Tämä raportti perehtyy aasialaisten gadgettien historiaan ja tulevaisuuden näkymiin. Työn historiakatsauksessa perehdytään 1900- ja 2000-luvun gadget -laitteisiin. Gadget on pieni mekaaninen tai elektroninen laite, jolla on jokin käyttötarkoitus. Japani on viimeisen sadan vuoden aikana tuottanut lukuisia merkittäviä gadgetteja. Tunnetuimpina saavutuksina voidaan esimerkiksi pitää CD- ja DVD -levyjä sekä useita tunnettuja pelikonsoleita. Viime vuosina se on saanut kilpailijoita Itä-Aasiasta. Tulevaisuudessa voidaan mahdollisesti odottaa matkapuhelimiin liittyviä gadgetteja, entistä tarkempia ja taivuteltavia näyttöjä sekä tämänhetkisiä gadgetteja yhdisteleviä laitteita.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Galactomannans (GM) are storage cell wall polysaccharides present in endospermic seeds of legumes. They are thought to be storage polymers, since it has been observed for a few species (among them Sesbania virgata) that they are completely broken down after germination and their products are transferred to the growing embryo. We examined the effect of 10-4 M abscisic acid (ABA) on the degradation of galactomannan in isolated endosperms and intact seeds of S. virgata. We found that after seed germination the initial embryo growth was retarded. Ultrastructural analysis showed that the embryo is completely surrounded by an endosperm which displays very thick galactomannan-containing cell walls. Although an inhibitory effect has been observed on the increase of fresh mass of the embryo, the effect of ABA on the dry mass was weaker and transitory (from 48 to 96 h). Endosperm dry mass and galactomannan degradation were significantly inhibited and the activity of alpha-galactosidase was strongly affected. The addition of ABA before and/or after the start of mobilisation in intact seeds or isolated endosperms, showed that whereas addition before mobilisation did not affect dry mass decrease in intact seeds, it was strongly affected in isolated endosperms. On the other hand, whereas it affected embryo fresh mass increase in intact seeds, but not in isolated embryos, no significant effect was observed on dry mass. These results suggest that ABA affects galactomannan degradation and by doing so, prevents water absorption by the embryo, rather than affect its dry mass. As ABA has been detected in the endosperm of seeds of S. virgata, it is proposed that it probably acts as a modulator of galactomannan mobilisation and consequently synchronises it with early growth of the embryo.
Resumo:
On the basis of our report that a glycolipoprotein fraction (GLP) extracted from Leptospira interrogans contains a potent inhibitor of renal Na,K-ATPase, we proposed that GLP-induced inhibition of Na,K-ATPase might be the primary cellular defect in the physiopathology of leptospirosis. The present study was designed to test this hypothesis by determining whether or not 1) GLP inhibits all the isoforms of Na,K-ATPase which are expressed in the tissues affected by leptospirosis, 2) Na,K-ATPase from leptospirosis-resistant species, such as the rat, is sensitive to GLP, 3) GLP inhibits Na,K-ATPase from intact cells, and 4) GLP inhibits ouabain-sensitive H,K-ATPase. The results indicate that in the rabbit, a leptospirosis-sensitive species, GLP inhibits with similar efficiency (apparent IC50: 120-220 µg protein GLP/ml) all isoforms of Na,K-ATPase known to be expressed in target tissues for the disease. Na,K-ATPase from rat kidney displays a sensitivity to GLP similar to that of the rabbit kidney enzyme (apparent IC50: 25-80 and 50-150 µg protein GLP/ml for rat and rabbit, respectively), indicating that resistance to the disease does not result from the resistance of Na,K-ATPase to GLP. GLP also reduces ouabain-sensitive rubidium uptake in rat thick ascending limbs (pmol mm-1 min-1 ± SEM; control: 23.8 ± 1.8; GLP, 88 µg protein/ml: 8.2 ± 0.9), demonstrating that it is active in intact cells. Finally, GLP had no demonstrable effect on renal H,K-ATPase activity, even on the ouabain-sensitive form, indicating that the active principle of GLP is more specific for Na,K-ATPase than ouabain itself. Although the hypothesis remains to be demonstrated in vivo, the present findings are compatible with the putative role of GLP-induced inhibition of Na,K-ATPase as an initial mechanism in the physiopathology of leptospirosis
Resumo:
Since the discovery of the up-conversion phenomenon, there has been an ever increasing interest in up-converting phosphors in which the absorption of two or more low energy photons is followed by emission of a higher energy photon. Most up-conversion luminescence materials operate by using a combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb or Er) and an activator (e.g. Er, Ho, Tm or Pr) ion in a crystal lattice. Up-converting phosphors have a variety of potential applications as lasers and displays as well as inks for security printing (e.g. bank notes and bonds). One of the most sophisticated applications of lanthanide up-conversion luminescence is probably in medical diagnostics. However, there are some major problems in the use of photoluminescence based on the direct UV excitation in immunoassays. Human blood absorbs strongly UV radiation as well as the emission of the phosphor in the visible. A promising way to overcome the problems arising from the blood absorption is to use a long wavelength excitation and benefit from the up-conversion luminescence. Since there is practically no absorption by the whole-blood in the near IR region, it has no capability for up-conversion in the excitation wavelength region of the conventional up-converting phosphor based on the Yb3+ (sensitizer) and Er3+ (activator) combination. The aim of this work was to prepare nanocrystalline materials with high red (and green) up-conversion luminescence efficiency for use in quantitative whole-blood immunoassays. For coupling to biological compounds, nanometer-sized (crystallite size below 50 nm) up-converting phosphor particles are required. The nanocrystalline ZrO2:Yb3+,Er3+, Y2O2S:Yb3+,Er3+, NaYF4:Yb3+,Er3+ and NaRF4-NaR’F4 (R: Y, Yb, Er) materials, prepared with the combustion, sol-gel, flux, co-precipitation and solvothermal synthesis, were studied using the thermal analysis, FT-IR spectroscopy, transmission electron microscopy, EDX spectroscopy, XANES/EXAFS measurements, absorption spectroscopy, X-ray powder diffraction, as well as up-conversion and thermoluminescence spectroscopies. The effect of the impurities of the phosphors, crystallite size, as well as the crystal structure on the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, persistent up-conversion luminescence was introduced and discussed. For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more uniform crystallite sizes. Surface modifications need to be studied to improve the dispersion in water. On the other hand, further work must be carried out to optimize the persistent up-conversion luminescence of the nanomaterials to allow for their use as efficient immunoassay nanomaterials combining the advantages of both up-conversion and persistent luminescence.
Resumo:
The once obscure members of the 14-3-3 protein family play significant roles in the determination of cell fate. By inhibiting the pro-apoptotic BAD (Bcl-2-antagonist of cell death) and the transcription factor FKHRL-1, 14-3-3 displays important anti-apoptotic characteristics. To date, five points of interaction of 14-3-3 with the apoptotic machinery have been identified. How these interactions are regulated still remains a mystery.
Resumo:
Apomorphine is a dopamine receptor agonist proposed to be a neuroprotective agent in the treatment of patients with Parkinson's disease. Both in vivo and in vitro studies have shown that apomorphine displays both antioxidant and pro-oxidant actions, and might have either neuroprotective or neurotoxic effects on the central nervous system. Some of the neurotoxic effects of apomorphine are mediated by its oxidation derivatives. In the present review, we discuss recent studies from our laboratory in which the molecular, cellular and neurobehavioral effects of apomorphine and its oxidized derivative, 8-oxo-apomorphine-semiquinone (8-OASQ), were evaluated in different experimental models, i.e., in vitro genotoxicity in Salmonella/microsome assay and WP2 Mutoxitest, sensitivity assay in Saccharomyces cerevisiae, neurobehavioral procedures (inhibition avoidance task, open field behavior, and habituation) in rats, stereotyped behavior in mice, and Comet assay and oxidative stress analyses in mouse brain. Our results show that apomorphine and 8-OASQ induce differential mutagenic, neurochemical and neurobehavioral effects. 8-OASQ displays cytotoxic effects and oxidative and frameshift mutagenic activities, while apomorphine shows antimutagenic and antioxidant effects in vitro. 8-OASQ induces a significant increase of DNA damage in mouse brain tissue. Both apomorphine and 8-OASQ impair memory for aversive training in rats, although the two drugs showed a different dose-response pattern. 8-OASQ fails to induce stereotyped behaviors in mice. The implications of these findings are discussed in the light of evidence from studies by other groups. We propose that the neuroprotective and neurotoxic effects of dopamine agonists might be mediated, in part, by their oxidized metabolites.
Resumo:
Brain computer interface (BCI) is a kind of human machine interface, which provides a new interaction method between human and computer or other equipment. The most significant characteristic of BCI system is that its control input is brain electrical activities acquired from the brain instead of traditional input such as hands or eyes. BCI technique has rapidly developed during last two decades and it has mainly worked as an auxiliary technique to help the disable people improve their life qualities. With the appearance of low cost novel electrical devices such as EMOTIV, BCI technique has been applied to the general public through many useful applications including video gaming, virtual reality and virtual keyboard. The purpose of this research is to be familiar with EMOTIV EPOC system and make use of it to build an EEG based BCI system for controlling an industrial manipulator by means of human thought. To build a BCI system, an acquisition program based on EMOTIV EPOC system is designed and a MFC based dialog that works as an operation panel is presented. Furthermore, the inverse kinematics of RV-3SB industrial robot was solved. In the last part of this research, the designed BCI system with human thought input is examined and the results indicate that the system is running smoothly and displays clearly the motion type and the incremental displacement of the motion.
Resumo:
Ureases are enzymes from plants, fungi and bacteria that catalyze the hydrolysis of urea to form ammonia and carbon dioxide. While fungal and plant ureases are homo-oligomers of 90-kDa subunits, bacterial ureases are multimers of two or three subunit complexes. We showed that some isoforms of jack bean urease, canatoxin and the classical urease, bind to glycoconjugates and induce platelet aggregation. Canatoxin also promotes release of histamine from mast cells, insulin from pancreatic cells and neurotransmitters from brain synaptosomes. In vivo it induces rat paw edema and neutrophil chemotaxis. These effects are independent of ureolytic activity and require activation of eicosanoid metabolism and calcium channels. Helicobacter pylori, a Gram-negative bacterium that colonizes the human stomach mucosa, causes gastric ulcers and cancer by a mechanism that is not understood. H. pylori produces factors that damage gastric epithelial cells, such as the vacuolating cytotoxin VacA, the cytotoxin-associated protein CagA, and a urease (up to 10% of bacterial protein) that neutralizes the acidic medium permitting its survival in the stomach. H. pylori whole cells or extracts of its water-soluble proteins promote inflammation, activate neutrophils and induce the release of cytokines. In this paper we review data from the literature suggesting that H. pylori urease displays many of the biological activities observed for jack bean ureases and show that bacterial ureases have a secretagogue effect modulated by eicosanoid metabolites through lipoxygenase pathways. These findings could be relevant to the elucidation of the role of urease in the pathogenesis of the gastrointestinal disease caused by H. pylori.
Resumo:
Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 µL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05) and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.
Resumo:
Atomic Layer Deposition (ALD) is the technology of choice where very thin and highquality films are required. Its advantage is its ability to deposit dense and pinhole-free coatings in a controllable manner. It has already shown promising results in a range of applications, e.g. diffusion barrier coatings for OLED displays, surface passivation layers for solar panels. Spatial Atomic Layer Deposition (SALD) is a concept that allows a dramatic increase in ALD throughput. During the SALD process, the substrate moves between spatially separated zones filled with the respective precursor gases and reagents in such a manner that the exposure sequence replicates the conventional ALD cycle. The present work describes the development of a high-throughput ALD process. Preliminary process studies were made using an SALD reactor designed especially for this purpose. The basic properties of the ALD process were demonstrated using the wellstudied Al2O3 trimethyl aluminium (TMA)+H2O process. It was shown that the SALD reactor is able to deposit uniform films in true ALD mode. The ALD nature of the process was proven by demonstrating self-limiting behaviour and linear film growth. The process behaviour and properties of synthesized films were in good agreement with previous ALD studies. Issues related to anomalous deposition at low temperatures were addressed as well. The quality of the coatings was demonstrated by applying 20 nm of the Al2O3 on to polymer substrate and measuring its moisture barrier properties. The results of tests confirmed the superior properties of the coatings and their suitability for flexible electronics encapsulation. Successful results led to the development of a pilot scale roll-to-roll coating system. It was demonstrated that the system is able to deposit superior quality films with a water transmission rate of 5x10-6 g/m2day at a web speed of 0.25 m/min. That is equivalent to a production rate of 180 m2/day and can be potentially increased by using wider webs. State-of-art film quality, high production rates and repeatable results make SALD the technology of choice for manufacturing ultra-high barrier coatings for flexible electronics.
Resumo:
This study reviews the research on interaction techniques and methods that could be applied in mobile augmented reality scenarios. The review is focused on themost recent advances and considers especially the use of head-mounted displays. Inthe review process, we have followed a systematic approach, which makes the reviewtransparent, repeatable, and less prone to human errors than if it was conducted in amore traditional manner. The main research subjects covered in the review are headorientation and gaze-tracking, gestures and body part-tracking, and multimodality– as far as the subjects are related to human-computer interaction. Besides these,also a number of other areas of interest will be discussed.
Resumo:
Intermediate filament keratins (K) play a pivotal role in protein targeting and epithelialcytoprotection from stress as evidenced by keratin mutations predisposing to human liver and skin diseases and possibly inflammatory bowel disease (IBD). The K8-null (K8-/-) mice exhibit colonic phenotype similar to IBD and marked spontaneous colitis, epithelial hyperproliferation, decreased apoptosis, mistargeting of proteins leading to defective ion transport and diarrhea. The K8-heterozygote (K8+/-) mouse colon appears normal but displays a defective sodium (Na+) and chloride (Cl-) transport similar to, but milder than K8-/-. Characterization of K8+/- colon revealed ~50% less keratins (K7, K8, K19, K20) compared to K8 wild type (K8+/+). A similar ~50% decrease was seen in K8+/- mRNA levels as compared to K8+/+, while the mRNA levels for the other keratins were unaltered. K8+/- keratins were arranged in a normal colonic crypt expression pattern, except K7 which was expressed at the top of crypts in contrast to K8+/+. The K8+/- colon showed mild hyperplasia but no signs of inflammation and no resistance to apoptosis. Experimental colitis induced by using different concentrations of dextran sulphate sodium (DSS) showed that K8+/- mice are slightly more sensitive to induced colitis and showed a delayed recovery compared to K8+/+. Hence, the K8+/- mouse with less keratins and without inflammation, provided a novel model to study direct molecular mechanisms of keratins in intestinal homeostasis and ion transport. Different candidate ion transporters for a possible role in altered ion transport seen in the K8-/- and K8+/- mouse colon were evaluated. Besides normal levels of CFTR, PAT-1 and NHE-3, DRA mRNA levels were decreased 3-4-fold and DRA protein nearly entirely lost in K8-/- caecum, distal and proximal colon compared to K8+/+. In K8+/- mice, DRA mRNA levels were unaltered while decreased DRA protein level and patchy distribution was detected particularly in the proximal colon and as compared to K8+/+. DRA was similarly decreased when K8 was knocked-down in Caco-2 cells, confirming that K8 levels modulate DRA levels in an inflammation-independent manner. The dramatic loss of DRA in colon and caecum of K8-/- mice was responsible for the chloride transport defect. The milder ion transport in K8+/- colon might be related to DRA suggesting a role for K8 in regulation of DRA expression and targeting. The current study demonstrates the importance of keratins in stress protection and cell signaling. Furthermore, we have also successfully developed a novel, simple, fast, cost effective, non-invasive in vivo imaging method for the early diagnosis of murine colitis with specificity for both genetic and experimental colitis. The said modality provides continuous measurements of reactive oxygen and nitrogen species (RONS) and minimizes the use of an increased number of experimental animals by using a luminal derivative chemiluminescent probe, L-012 which provides a cost-effective tool to study the level and longitudinal progression of colitis.