873 resultados para multi-agent systems
Resumo:
The main purpose of this work is to give a survey of main monotonicity properties of queueing processes based on the coupling method. The literature on this topic is quite extensive, and we do not consider all aspects of this topic. Our more concrete goal is to select the most interesting basic monotonicity results and give simple and elegant proofs. Also we give a few new (or revised) proofs of a few important monotonicity properties for the queue-size and workload processes both in single-server and multi- server systems. The paper is organized as follows. In Section 1, the basic notions and results on coupling method are given. Section 2 contains known coupling results for renewal processes with focus on construction of synchronized renewal instants for a superposition of independent renewal processes. In Section 3, we present basic monotonicity results for the queue-size and workload processes. We consider both discrete-and continuous-time queueing systems with single and multi servers. Less known results on monotonicity of queueing processes with dependent service times and interarrival times are also presented. Section 4 is devoted to monotonicity of general Jackson-type queueing networks with Markovian routing. This section is based on the notable paper [17]. Finally, Section 5 contains elements of stability analysis of regenerative queues and networks, where coupling and monotonicity results play a crucial role to establish minimal suficient stability conditions. Besides, we present some new monotonicity results for tandem networks.
Resumo:
Aquest projecte descriu una plataforma de simulació per a xarxes de sensors des de la perspectiva dels sistemes multi-agents. La plataforma s'ha dissenyat per facilitar la simulació de diferents aplicacions concretes de xarxes de sensors. A més, s'ha entregat com a artefacte del projecte IEA (Institucions Electròniques Autònomes, TIN2006-15662-C02-0) de l'IIIACSIC. Dins l'entorn de l'IEA, aquesta és l'eina que aporta les capacitats de simulació per donar suport al disseny d'algorismes adaptatius per a xarxes de sensors.
Resumo:
The relationship between competition and performance-related pay has been analyzed in single-principal-single-agent models. While this approach yields good predictions for managerial pay schemes, the predictions fail to apply for employees at lower tiers of a firm's hierarchy. In this paper, a principal-multi-agent model of incentive pay is developed which makes it possible to analyze the effect of changes in the competitiveness of markets on lower tier incentive payment schemes. The results explain why the payment schemes of agents located at low and mid tiers are less sensitive to changes in competition when aggregated firm data is used. Journal of Economic Literature classiffication numbers: D82, J21, L13, L22. Keywords: Cournot Competition, Contract Delegation, Moral Hazard, Entry, Market Size, Wage Cost.
Resumo:
Aquest projecte titulat: “Disseny de controladors òptims per al robot Pioneer”, té com a funcióincloure en la recerca, que ja està iniciada, del control del Robot Pioneer 2DX, una novaversió d’agents go to per al funcionament del robot.La problemàtica que ens trobem és sobretot per al primer controlador. Fins ara el sistemamulti-agent fet, feia servir un agent go to que generava la trajectòria a seguir i la controlavamitjançant un PID. Introduint un mètode geomètric com és el cas del pure pursuit la cosa escomplica ja que és més complex l’ajustament del funcionament d’aquest. Centrant-nos encanvi el cas del segon controlador el problema es simplifica ja que l’ajustatge d’aquestmateix es pot realitzar de manera empírica i la problemàtica per a la situació en concret esmillora amb major facilitat.És per aquest motiu, sobretot pel primer controlador, que s’han hagut de realitzar algunesmodificacions en el plantejament del projecte al llarg d’aquest. En un principi estava pensatcrear aquest controlador a través de Matlab® mitjançant l’eina Simulink® però perproblemes de software en un moment donat hem hagut de redirigir el projecte cap alllenguatge base de l’estructura multi-agent com és el C++. Per aquest motiu també s’hahagut de prescindir de la implementació d’aquests també en l’estructura LabView®.
Resumo:
HEMOLIA (a project under European community’s 7th framework programme) is a new generation Anti-Money Laundering (AML) intelligent multi-agent alert and investigation system which in addition to the traditional financial data makes extensive use of modern society’s huge telecom data source, thereby opening up a new dimension of capabilities to all Money Laundering fighters (FIUs, LEAs) and Financial Institutes (Banks, Insurance Companies, etc.). This Master-Thesis project is done at AIA, one of the partners for the HEMOLIA project in Barcelona. The objective of this thesis is to find the clusters in a network drawn by using the financial data. An extensive literature survey has been carried out and several standard algorithms related to networks have been studied and implemented. The clustering problem is a NP-hard problem and several algorithms like K-Means and Hierarchical clustering are being implemented for studying several problems relating to sociology, evolution, anthropology etc. However, these algorithms have certain drawbacks which make them very difficult to implement. The thesis suggests (a) a possible improvement to the K-Means algorithm, (b) a novel approach to the clustering problem using the Genetic Algorithms and (c) a new algorithm for finding the cluster of a node using the Genetic Algorithm.
Resumo:
The explosive growth of Internet during the last years has been reflected in the ever-increasing amount of the diversity and heterogeneity of user preferences, types and features of devices and access networks. Usually the heterogeneity in the context of the users which request Web contents is not taken into account by the servers that deliver them implying that these contents will not always suit their needs. In the particular case of e-learning platforms this issue is especially critical due to the fact that it puts at stake the knowledge acquired by their users. In the following paper we present a system that aims to provide the dotLRN e-learning platform with the capability to adapt to its users context. By integrating dotLRN with a multi-agent hypermedia system, online courses being undertaken by students as well as their learning environment are adapted in real time
Resumo:
Many complex systems may be described by not one but a number of complex networks mapped on each other in a multi-layer structure. Because of the interactions and dependencies between these layers, the state of a single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of five examples of two-layer complex systems: three real-life data sets in the fields of communication (the Internet), transportation (the European railway system), and biology (the human brain), and two models based on random graphs. In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multi-layer systems are much more vulnerable to errors and intentional attacks than they appear from a single layer perspective.
Resumo:
In this paper the core functions of an artificial intelligence (AI) for controlling a debris collector robot are designed and implemented. Using the robot operating system (ROS) as the base of this work a multi-agent system is built with abilities for task planning.
Resumo:
The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.
Resumo:
DDM is a framework that combines intelligent agents and artificial intelligence traditional algorithms such as classifiers. The central idea of this project is to create a multi-agent system that allows to compare different views into a single one.
Resumo:
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
Resumo:
Nykyisessä valmistusteollisuudessa erilaisten robottien ja automatisoitujen tuotantovaiheiden rooli on erittäin merkittävä. Tarkasti suunnitellut liikkeet ja toimintavaiheet voidaan nykyisillä järjestelmillä ajoittaa tarkasti toisiinsa nähden, jolloin erilaisten virhetilanteidenkin sattuessa järjestelmä pystyy toimimaan tilanteen edellyttämällä tavalla. Automatisoinnin etuna on myös tuotannon muokkaaminen erilaisten tuotteiden valmistamiseen pienillä muutoksilla, jolloin tuotantokustannukset pysyvät matalina myös pienten valmistuserien tapauksissa. Usean akselin laitteissa eli niin sanotuissa moniakselikäytöissä laitteen toimintatarkkuus riippuu jokaisen liikeakselin tarkkuudesta. Liikkeenohjauksessa on perinteisesti ollut käytössä myötäkytketty paikkakaskadi, jonka virityksessä otetaan huomioon akselilla olevat erilaiset dynaamiset tilat ja käytettävät referenssit. Monissa nykyisissä hajautetuissa järjestelmissä eli moniakselikäytöissä, joissa jokaiselle akselille on oma ohjauslaite, ei yksittäisen akselin paikkavirhettä huomioida muiden akseleiden ohjauksessa. Työssä tutkitaan erilaisia moniakselijärjestelmien ohjausmenetelmiä ja myötäkytketyn paikkakaskadin toimintaa moniakselikäytössä pyritään parantamaan tuomalla paikkasäätimen rinnalle toinen säädin, jonka tulona on akseleiden välinen paikkaero.
Resumo:
As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.
Resumo:
The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.
Resumo:
The Robocup Rescue Simulation System (RCRSS) is a dynamic system of multi-agent interaction, simulating a large-scale urban disaster scenario. Teams of rescue agents are charged with the tasks of minimizing civilian casualties and infrastructure damage while competing against limitations on time, communication, and awareness. This thesis provides the first known attempt of applying Genetic Programming (GP) to the development of behaviours necessary to perform well in the RCRSS. Specifically, this thesis studies the suitability of GP to evolve the operational behaviours required of each type of rescue agent in the RCRSS. The system developed is evaluated in terms of the consistency with which expected solutions are the target of convergence as well as by comparison to previous competition results. The results indicate that GP is capable of converging to some forms of expected behaviour, but that additional evolution in strategizing behaviours must be performed in order to become competitive. An enhancement to the standard GP algorithm is proposed which is shown to simplify the initial search space allowing evolution to occur much quicker. In addition, two forms of population are employed and compared in terms of their apparent effects on the evolution of control structures for intelligent rescue agents. The first is a single population in which each individual is comprised of three distinct trees for the respective control of three types of agents, the second is a set of three co-evolving subpopulations one for each type of agent. Multiple populations of cooperating individuals appear to achieve higher proficiencies in training, but testing on unseen instances raises the issue of overfitting.