885 resultados para multi-agent incremental negotiation scheme
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
This work aims at proposing the use of the evolutionary computation methodology in order to jointly solve the multiuser channel estimation (MuChE) and detection problems at its maximum-likelihood, both related to the direct sequence code division multiple access (DS/CDMA). The effectiveness of the proposed heuristic approach is proven by comparing performance and complexity merit figures with that obtained by traditional methods found in literature. Simulation results considering genetic algorithm (GA) applied to multipath, DS/CDMA and MuChE and multi-user detection (MuD) show that the proposed genetic algorithm multi-user channel estimation (GAMuChE) yields a normalized mean square error estimation (nMSE) inferior to 11%, under slowly varying multipath fading channels, large range of Doppler frequencies and medium system load, it exhibits lower complexity when compared to both maximum likelihood multi-user channel estimation (MLMuChE) and gradient descent method (GrdDsc). A near-optimum multi-user detector (MuD) based on the genetic algorithm (GAMuD), also proposed in this work, provides a significant reduction in the computational complexity when compared to the optimum multi-user detector (OMuD). In addition, the complexity of the GAMuChE and GAMuD algorithms were (jointly) analyzed in terms of number of operations necessary to reach the convergence, and compared to other jointly MuChE and MuD strategies. The joint GAMuChE-GAMuD scheme can be regarded as a promising alternative for implementing third-generation (3G) and fourth-generation (4G) wireless systems in the near future. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.
Resumo:
Group decision making plays an important role in organizations, especially in the present-day economy that demands high-quality, yet quick decisions. Group decision-support systems (GDSSs) are interactive computer-based environments that support concerted, coordinated team efforts toward the completion of joint tasks. The need for collaborative work in organizations has led to the development of a set of general collaborative computer-supported technologies and specific GDSSs that support distributed groups (in time and space) in various domains. However, each person is unique and has different reactions to various arguments. Many times a disagreement arises because of the way we began arguing, not because of the content itself. Nevertheless, emotion, mood, and personality factors have not yet been addressed in GDSSs, despite how strongly they influence results. Our group’s previous work considered the roles that emotion and mood play in decision making. In this article, we reformulate these factors and include personality as well. Thus, this work incorporates personality, emotion, and mood in the negotiation process of an argumentbased group decision-making process. Our main goal in this work is to improve the negotiation process through argumentation using the affective characteristics of the involved participants. Each participant agent represents a group decision member. This representation lets us simulate people with different personalities. The discussion process between group members (agents) is made through the exchange of persuasive arguments. Although our multiagent architecture model4 includes two types of agents—the facilitator and the participant— this article focuses on the emotional, personality, and argumentation components of the participant agent.
Resumo:
Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.
Resumo:
8th International Workshop on Multiple Access Communications (MACOM2015), Helsinki, Finland.