875 resultados para mineral deficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory simulation of cloud processing of three model dust types with distinct Fe-content (Moroccan dust, Libyan dust and Etna ash) and reference goethite and ferrihydrite were conducted in order to gain a better understanding of natural nanomaterial inputs and their environmental fate and bioavailability. The resulting nanoparticles (NPs) were characterised for Fe dissolution kinetics, aggregation/size distribution, micromorphology and colloidal stability of particle suspensions using a multi-method approach. We demonstrated that the: (i) acid-leachable Fe concentration was highest in volcanic ash (1 m Mg(-1) dust) and was followed by Libyan and Moroccan dust with an order of magnitude lower levels; (ii) acid leached Fe concentration in the<20 nm fraction was similar in samples processed in the dark with those under artificial sunlight, but average hydrodynamic diameter of NPs after cloud-processing (pH~6) was larger in the former; iii) NPs formed at pH~6 were smaller and less poly-disperse than those at low pH, whilst unaltered zeta potentials indicated colloidal instability; iv) relative Fe percentage in the finer particles derived from cloud processing does not reflect Fe content of unprocessed dusts (e.g. volcanic ash>Libyan dust). The common occurrence of Fe-rich "natural nanoparticles" in atmospheric dust derived materials may indicate their more ubiquitous presence in the marine environment than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory studies were conducted to investigate the interactions of nanoparticles (NPs) formed via simulated cloud processing of mineral dust with seawater under environmentally relevant conditions. The effect of sunlight and the presence of exopolymeric substances (EPS) were assessed on the: (1) colloidal stability of the nanoparticle aggregates (i.e. size distribution, zeta potential, polydispersity); (2) micromorphology and (3) Fe dissolution from particles. We have demonstrated that: (i) synthetic nano-ferrihydrite has distinct aggregation behaviour from NPs formed from mineral dusts in that the average hydrodynamic diameter remained unaltered upon dispersion in seawater (~1500 nm), whilst all dust derived NPs increased about three fold in aggregate size; (ii) relatively stable and monodisperse aggregates of NPs formed during simulated cloud processing of mineral dust become more polydisperse and unstable in contact with seawater; (iii) EPS forms stable aggregates with both the ferrihydrite and the dust derived NPs whose hydrodynamic diameter remains unchanged in seawater over 24h; (iv) dissolved Fe concentration from NPs, measured here as <3 kDa filter-fraction, is consistently >30% higher in seawater in the presence of EPS and the effect is even more pronounced in the absence of light; (v) micromorphology of nanoparticles from mineral dusts closely resemble that of synthetic ferrihydrite in MQ water, but in seawater with EPS they form less compact aggregates, highly variable in size, possibly due to EPS-mediated steric and electrostatic interactions. The larger scale implications on real systems of the EPS solubilising effect on Fe and other metals with the additional enhancement of colloidal stability of the resulting aggregates are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial oxidative stress and hypertrophic remodeling. Up-regulation of the cardiomyocyte adrenomedullin (AM) / intermedin (IMD) receptor signaling cascade is also apparent in NO-deficient cardiomyocytes: augmented expression of AM and receptor activity modifying proteins RAMP2 and RAMP3 is prevented by blood pressure normalization while that of RAMP1 and intermedin (IMD) is not, indicating that the latter is regulated by a pressure-independent mechanism. Aims: to verify the ability of an anti-oxidant intervention to normalize cardiomyocyte oxidant status and to investigate the influence of such an intervention on expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes. Methods: NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 35mg/kg/day) was given to rats for 8 weeks, with/without con-current administration of antioxidants (Vitamin C (25mg/kg/day) and Tempol (25mg/kg/day)). Results: In left ventricular cardiomyocytes isolated from L-NAME treated rats, increased oxidative stress was indicated by augmented (3.6 fold) membrane protein oxidation, enhanced expression of catalytic and regulatory subunits of pro-oxidant NADPH oxidases (NOX1, NOX2) and compensatory increases in expression of anti-oxidant glutathione peroxidase and Cu/Zn superoxide dismutases (SOD1, SOD3). Vitamin C plus Tempol did not reduce systolic blood pressure but normalized augmented plasma levels of IMD, but not of AM, and in cardiomyocytes: (i) abolished increased membrane protein oxidation; (ii) normalized augmented expression of prepro-IMD and RAMP1, but not prepro-AM, RAMP2 and RAMP3; (iii) attenuated (by 42%) increased width and normalized expression of hypertrophic markers, skeletal-�-actin and prepro-endothelin-1 similarly to blood pressure normalization but in contrast to blood pressure normalization did not attenuate augmented brain natriuretic peptide (BNP) expression. Conclusion: normalization specifically of augmented IMD/RAMP1 expression in NO-deficient cardiomyocytes by antioxidant intervention in the absence of blood pressure reduction indicates that these genes are likely to be induced directly by myocardial oxidative stress. Although oxidative stress contributed to cardiomyocyte hypertrophy, induction of IMD and RAMP1 is unlikely to be secondary to cardiomyocyte hypertrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.

Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.

Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).

Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.