920 resultados para histone acetyltransferase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short chain fatty acids (SCFAs) are fermentation products of anaerobic bacteria. More than just being an important energy source for intestinal epithelial cells, these compounds are modulators of leukocyte function and potential targets for the development of new drugs. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate and butyrate) on production of nitric oxide (NO) and proinflammatory cytokines [tumor necrosis factor alpha (TNF-alpha) and cytokine-induced neutrophil chemoattractant-2 (CINC-2 alpha beta)] by rat neutrophils. The involvement of nuclear factor kappa B (NF-kappa B) and histone deacetylase (HDAC) was examined. The effect of butyrate was also investigated in vivo after oral administration of tributyrin (a pro-drug of butyrate). Propionate and butyrate diminished TNF-alpha, CINC-2 alpha beta and NO production by LPS-stimulated neutrophils. We also observed that these fatty acids inhibit HDAC activity and NF-kappa B activation, which might be involved in the attenuation of the LPS response. Products of cyclooxygenase and 5-lipoxygenase are not involved in the effects of SCFAs as indicated by the results obtained with the inhibitors of these enzymes. The recruitment of neutrophils to the peritonium after intraperitoneal administration of a glycogen solution (1%) and the ex vivo production of cytokines and NO by neutrophils were attenuated in rats that previously received tributyrin. These results argue that this triglyceride may be effective in the treatment of inflammatory conditions. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most trichothiodystrophy (TTD) patients present mutations in the xeroderma pigmentosum D (XPD) gene, coding for a subunit of the transcription/repair factor IIH (TFHH) complex involved in nucleotide excision repair (NER) and transcription. After UV irradiation, most TTD/XPD patients are more severely affected in the NER of cyclobutane pyrimidine dimers (CPD) than of 6-4-photoproducts (6-4PP). The reasons for this differential DNA repair defect are unknown. Here we report the first study of NER in response to CPDs or 6-4PPs separately analyzed in primary fibroblasts. This was done by using heterologous photorepair; recombinant adenovirus vectors carrying photolyases enzymes that repair CPD or 64PP specifically by using the energy of light were introduced in different cell lines. The data presented here reveal that some mutations affect the recruitment of TFHH specifically to CPDs, but not to 6-4PPs. This deficiency is further confirmed by the inability of TTD/XPD cells to recruit, specifically for CPDs, NER factors that arrive in a TFIIH-dependent manner later in the NER pathway. For 6-4PPs, we show that TFHH complexes carrying an NH2-terminal XPD mutated protein are also deficient in recruitment of NER proteins downstream of TFUH. Treatment with the histone deacetylase inhibitor trichostatin A allows the recovery of TFHH recruitment to CPDs in the studied TTD cells and, for COOH-terminal XPD mutations, increases the repair synthesis and survival after UV, suggesting that this defect can be partially related with accessibility of DNA damage in closed chromatin regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair(NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gamma H2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase II alpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that melatonin participates in the regulation of many important physiological functions such as sleep-wakefulness cycle, motor coordination and neural plasticity, and cognition. However, as there are contradictory results regarding the melatonin production diurnal profile under alcohol consumption, the aim of this paper was to study the phenomenology and mechanisms of the putative modifications on the daily profile of melatonin production in rats submitted to chronic alcohol intake. The present results show that rats receiving 10% ethanol in drinking water for 35 days display an altered daily profile of melatonin production, with a phase delay and a reduction in the nocturnal peak. This can be partially explained by a loss of the daily rhythm and the 25% reduction in tryptophan hydroxylase activity and, mainly, by a phase delay in arylalkylamine N-acetyltransferase gene expression and a 70% reduction in its peak activity. Upstream in the melatonin synthesis pathway, the results showed that noradrenergic signaling is impaired as well, with a decrease in beta 1 and alpha 1 adrenergic receptors` mRNA contents and in vitro sustained loss of noradrenergic-stimulated melatonin production by glands from alcohol-treated rats. Together, these results confirm the alterations in the daily melatonin profile of alcoholic rats and suggest the possible mechanisms for the observed melatonin synthesis modification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: In our previous work, we reported that the insulin potentiating effect on melatonin synthesis is regulated by a post-transcriptional mechanism. However, the major proteins of the insulin signaling pathway (ISP) and the possible pathway component recruited on the potentiating effect of insulin had not been characterized. A second question raised was whether windows of sensitivity to insulin exist in the pineal gland due to insulin rhythmic secretion pattern. Main methods: Melatonin content from norepinephrine(NE)-synchronized pineal gland cultures was quantified by high performance liquid chromatography with electrochemical detection and arylalkylamine-N-acetyltransferase (AANAT) activity was assayed by radiometry. Immunoblotting and immunoprecipitation techniques were performed to establish the ISP proteins expression and the formation of 14-3-3: AANAT complex, respectively. Key findings: The temporal insulin susceptibility protocol revealed two periods of insulin potentiating effect, one at the beginning and another one at the end of the in vitro induced ""night"". In some Timed-insulin Stimulation (TSs), insulin also promoted a reduction on melatonin synthesis, showing its dual action in cultured pineal glands. The major ISP components, such as IR beta, IGF-1R, IRS-1, IRS-2 and PI3K(p85), as well tyrosine phosphorylation of pp85 were characterized within pineal glands. Insulin is not involved in the 14-3-3:AANAT complex formation. The blockage of PI3K by LY 294002 reduced melatonin synthesis and AANAT activity. Significance: The present study demonstrated windows of differential insulin sensitivity, a functional ISP and the PI3K-dependent insulin potentiating effect on NE-mediated melatonin synthesis, supporting the hypothesis of a crosstalk between noradrenergic and insulin pathways in the rat pineal gland. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Materials and methods: Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5kGy, using a 60Co gamma source facility. Samples irradiated with 3kGy were exposed for 2h to a 20Vcm-1 static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36C for 20h, gamma-irradiated with doses from 1-4kGy, and submitted to an electric field of 180Vcm-1. Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with -H2AX foci. Results: In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with -H2AX foci increased 40%, approximately. Conclusions: Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation+EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with -H2AX foci in MRC5 cells indicates that an EF interferes mostly in the DNA repair mechanisms. A molecular ad-hoc model is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Embryonic stem cells are cells derived from early-stage embryos that are characterized by pluripotency and self-renewal capacity. The in vitro cultured murine embryonic stem cells can indefinitely propagate in an undifferentiated state in the presence of leukemia inhibitory factor (LIF). However, when stimulated, these cells can differentiate into cell lines derived from all three embryonic germ layers. The trichostatin A (TSA) is an epigenetic modifier agent and several studies have used the TSA to stimulate cellular differentiation. However, most of these studies only assessed one TSA concentration. Therefore, this study aimed to evaluate the effects of different TSA concentrations on histone hyperacetylation during in vitro cell differentiation of murine pluripotent embryonic stem cells, cultured with or without LIF, in the quest of to standardize their application on early cultures of embryonic stem cells.Materials, Methods & Results: Undifferentiated murine embryonic stem cells were plated in the presence of different TSA concentrations (0 nM, 15 nm, 50 nM and 100 nM) in the presence or absence of LIF. Thus, the treatments were evaluated in undifferentiated embryonic stem cells cultured in the presence of LIF (Control group: 0 nM LIF(+); Group 15 nM LIF+; Group 50 nM LIF+ and Group 100 nM LIF+), and in embryonic stem cells cultured in the absence of LIF (Control group: 0 nM LIF; Group 15 nM LIF(-); Group 50 nM LIF(-) and Group 100 nM LIF-). Treatment with TSA was performed for 24 h. After that the medium was replaced with fresh medium without TSA. Samples were collected at 0, 12, 24, 36 and 48 h after the beginning of the experiment. Three replicates were performed in each experimental group. The relative amount of Histone H3 lysine 9 acetylation was analyzed in all groups, as well as the cell proliferation in the embryonic stem cells cultured in the presence of LIF. In the control group (0 nM), the absence of LIF resulted in higher levels (P < 0.05) of H3lys9ac compared to the cultures supplemented with LIF. In the embryonic stem cells cultured in the presence of LIF, the 50 nM and 100 nM treatments resulted in higher levels (P < 0.05) of H3lys9ac when compared with 0 nM and 15 nM treatments. Evaluating the Hoechst area in the 0 nM group, it was observed that the number of cells increased (P < 0.05) according to the time of culture. Treatment with 15 nM also reflected a similar distribution, but the Hoechst area in 15 nM group was lower (P < 0.05) at 24 and 48h when compared to the observed in the control group. In the 100 nM treatment, was observed that the area of Hoechst was lower (P < 0.05) to that obtained in the control group at 12, 24 and 48h. In addition, it was observed that treatment with TSA induces greater cellular differentiation when compared to control groups in stem cells cultured in the presence of LIF as well as in the absence of LIF.Discussion: In the present study it was observed that TSA treatment increased the levels of histone acetylation in murine embryonic stem cells at a 50 nM concentration, making it possible to reduce the concentration recommended in the literature (100 nM). In addtion, it was concluded that the lower TSA concentrations utilized (15 nm and 50 nM) was less harmful to cellular proliferation than the 100 nM TSA concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To the vertebrates, maintain body balance against the gravitational field and be able to orient themselves in the environment are fundamental aspects for survival, in which the participation of vestibular system is essential. As part of this system, the vestibular nuclear complex is the first central station that, by integrating many information (visual, proprioceptive), and the vestibular, assumes the lead role in maintaining balance. In this study, the vestibular nuclear complex was evaluated in relation to its cytoarchitecture and neurochemical content of cells and axon terminals, through the techniques of Nissl staining and immunohistochemistry for neuronal specific nuclear protein (NeuN), glutamate (Glu), substance P (SP), choline acetyltransferase (ChAT) (enzyme that synthesizes acetylcholine-Ach) and glutamic acid decarboxylase (GAD) (enzyme that synthesizes gamma-amino butyric acid-GABA). The common marmoset (Callithrix jacchus) was used as experimental animal, which is a small primate native from the Atlantic Forest in the Brazilian Northeast. As results, the Nissl technique, complemented by immunohistochemistry for NeuN allowed to delineate the vestibular nucleus superior, lateral, medial and inferior (or descending) in the brain of the common marmoset. Neurons and terminals immunoreactive to Glu and ChAT and only immunoreactive terminals to SP and GAD were seen in all nuclei, although in varying density. This study confirms the presence in the vestibular nuclei of the common marmoset, of Glu and SP in terminals, probably from the first order neurons of vestibular ganglion, and of GABA in terminals, presumably from Purkinge cells of the cerebellum. Second-order neurons of the vestibular nuclei seem to use Glu and Ach as neurotransmitters, judging by their expressive presence in the cell bodies of these nuclei in common marmosets, as reported in other species

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flowering is a process marked by switch of shoot apical meristem to floral meristem, and it involves a complex regulation by endogenous and environmental factors. Analyses of key flowering genes have been carried out primarily in Arabidopsis thaliana and have provided a foundation for understanding the underlying molecular genetic mechanisms controlling different aspects of floral development. Several homologous have been found in other species, but for crops species such as tomatoes this process is not well known. The aim of this work was to use the genetic natural variation associated to the flowering process and use molecular tools such as subtractive libraries and real time PCR in order to identify and analyze the expression from genes that may be associated to flowering in these two species: L. esculentum cv Micro-Tom and L. pimpinellifolium. Our results showed there were identified many genes related to vegetative and possibly to the flowering process. There were also identified many sequences that were unknown. We ve chosen three genes to analyze the expression by real time PCR. The histone H2A gene gave an expression higher in L. pimpinellifolium, due to this the expression of this gene may be associated to flowering in this specie. It was also analyzed the expression of an unknown gene that might be a key factor of the transition to flowering, also in L. pimpinellifolium. For the elongation factor 1-α expression, the expression results were not informative, so this gene may have a constitutive expression in vegetative and flowering state. The results observed allowed us to identify possible genes that may be related to the flowering process. For further results it will be necessary a better characterization of them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The total number of prokaryotic cells on Earth has been estimated at 4 to 6x1030 and only about 1% of microorganisms present in the environment can be cultivated by standard techniques of cultivation and plating. Therefore, it is a huge biological and genetic pool that can be exploited, for the identification and characterization of genes with biotechnological potential. Within this perspective, the metagenomics approach was applied in this work. Functional screening methods were performed aiming to identify new genes related to DNA repair and / or oxidative stress resistance, hydrocarbon degradation and hydrolytic activities (lipase, amylase and protease). Metagenomic libraries were built utilizing DNA extracted from soil samples collected in João Câmara RN. The libraries were analyzed functionally using specific substrate containing solid medium (hydrolytic activity), supplemented with H2O2 (DNA repair and / or resistance to oxidative stress) and liquid medium supplemented with light Arabian oil (activity, degradation of hydrocarbons). After confirmation of activity and exclusion of false-positive results, 49 clones were obtained, being 2 positive for amylase activity, 22 resistant to oxidative stress generated by H2O2 and 25 clones active for hydrocarbons degradation. Analysis of the sequences showed hypothetical proteins, dienelactona hydrolase, DNA polymerase, acetyltransferase, phosphotransferase, methyltransferase, endonucleases, among other proteins. The sequence data obtained matched with the functions tested, highlighting the success of metagenomics approaches combined with functional screening methods, leading to very promising results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The auditory system is composed by a set of relays from the outer ear to the cerebral cortex. In mammals, the central auditory system is composed by cochlear nuclei, superior olivary complex, inferior colliculus and medial geniculate body. In this study, the auditory rombencephalic centers, the cochlear nuclear complex and the superior olivary complex were evaluated from the cytoarchitecture and neurochemical aspects, thorough Nissl staining and immunohistochemical techniques to reveal specific neuron nuclear protein (NeuN), glutamate (Glu), glutamic acid decarboxilase (GAD), enkephalin (ENK), serotonin (5-HT), choline acetyltransferase (ChAT) and calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV). The common marmoset (Callithrix jacchus), a little native primate of the Brazilian atlantic forest was used as an experimental animal. As results, it was noted that the cochlear nuclear complex is composed by anteroventral, posteroventral and dorsal nuclei, and the superior olivary complex is constituted by the lateral and medial superior olivary nuclei and the trapezoid body nucleus. Glu, GAD, ENK, ChAT, CB, CR, PV-immunoreactive cells, fibers and terminals besides besides only 5-HT terminals were found unhomogeneously in all nuclei, of both complex. The emerging data are discussed in a comparative and functional context, and represent an important contribution to knowledge of the central auditory pathways in the common marmoset, and then in primates

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thalamus plays an important role in the sensorial processing information, in this particular case, the visual information. Several neuronal groups have been characterized as conductors and processors of important sensorial information to the cerebral cortex. The lateral geniculate complex is one to them, and appears as a group very studied once it is responsible, in almost all totality, for the processing of visual information. Among the nuclei that constitute the lateral geniculate complex we highlight the dorsal lateral geniculate nucleus of the thalamus (DLG), the main thalamic relay for the visual information. This nucleus is located rostral and lateral to medial geniculate nucleus and ventral to thalamic pulvinar nucleus in most of the mammals. In the primates humans and non-humans, it presents as a laminate structure, arranged in layers, when observed in coronal sections. The objective of this work was to do a mapping of the retinal projections and a citoarchictetonic and neurochemical characterization of DLG in the marmoset (Callithrix jacchus), a New World primate. The retinal projections were traced by anterograde transport of subunit b of cholera toxin (CTb), the citoarchicteture was described by Nissl method, and to neurochemical characterization immunohistochemicals technical were used to examine the main neurotransmitters and neuroatives substances present in this neural center. In DGL of marmoset thalamus, in coronal sections labeled by Nissl method, was possible to visualize the division of this nucleus in four layers divided in two portions: magnocellular and parvocellular. The retinal projections were present being visualized fibers and terminals immunorreactives to CTb (IR-CTb) in the DLG ipsilateral and contralateral. And through the immunohistochemicals techniques was observed that DLG contain cells, fibers and/or terminals immunoreactives against neuronal nuclear protein, subunits of AMPA 15 glutamate receptors (GluR1, GluR2/3, GluR4), choline acetyltransferase, serotonin, glutamic acid decarboxylase, binding calcium proteins (calbindin, parvalbumin and calretinin), vasopressin, vasoactive intestinal polypeptide, and an astrocyte protein, glial fibrillary acidic protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Replicative life span in Saccharomyces cerevisiae is increased by glucose (G1c) limitation [ calorie restriction (CR)] and by augmented NAD(+). Increased survival promoted by CR was attributed previously to the NAD(+)-dependent histone deacetylase activity of sirtuin family protein Sir2p but not to changes in redox state. Here we show that strains defective in NAD(+) synthesis and salvage pathways (pnc1 Delta, npt1 Delta, and bna6 Delta) exhibit decreased oxygen consumption and increased mitochondrial H2O2 release, reversed over time by CR. These null mutant strains also present decreased chronological longevity in a manner rescued by CR. Furthermore, we observed that changes in mitochondrial H2O2 release alter cellular redox state, as attested by measurements of total, oxidized, and reduced glutathione. Surprisingly, our results indicate that matrix-soluble dihydrolipoyl-dehydrogenases are an important source of CR-preventable mitochondrial reactive oxygen species (ROS). Indeed, deletion of the LPD1 gene prevented oxidative stress in npt1 Delta and bna6 Delta mutants. Furthermore, pyruvate and alpha-ketoglutarate, substrates for dihydrolipoyl dehydrogenase-containing enzymes, promoted pronounced reactive oxygen release in permeabilized wild-type mitochondria. Altogether, these results substantiate the concept that mitochondrial ROS can be limited by caloric restriction and play an important role in S. cerevisiae senescence. Furthermore, these findings uncover dihydrolipoyl dehydrogenase as an important and novel source of ROS leading to life span limitation.