914 resultados para grain crushing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extreme sensitivity of Sm/Ba at high temperature in air becomes an obstacle to the fabrication of SmBCO single grains that exhibit stable and reliable superconducting properties. In this research, the superconducting properties of SmBCO single grains fabricated by top seeded melt growth (TSMG) from different batches of commercial SmBa2Cu3O 7-d (Sm-123) precursor powder using different processing atmospheres (air and 0.1% O2 in Ar), different processing methods (isothermal growth and continuous cooling) and different amounts of BaO2 content to suppress Sm/Ba substitution in air have been investigated in an attempt to understand fully the TSMG process for this system. As a result, based on extensive data, a novel and simple, low temperature post-annealing approach is proposed specifically to overcome the sensitivity of Tc to Sm/Ba substitution in order to simplify the fabrication of SmBCO and to increase its reliability with a view to the practical processing of these materials. Initial processing trials have been performed successfully to demonstrate the viability of the novel post-annealing process. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular polymeric substances (EPS) from four filamentous cyanobacteria Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green alga Desmococcus olivaceus that had been separated from desert algal crusts of Tegger desert of China, were investigated for their chemical composition, structure,and physical properties. The EPS contained 7.5-50.3% protein (in polymers ranging from 14 to more than 200 kD, SDS-PAGE) and 16.2-46.5% carbohydrate (110-460 kD, GFC). 6-12 kinds of monosaccharides, including 2-O-methyl rhamnose, 2-O-methyl glucose, and N-acetyl glucosamine were found. The main carbohydrate chains from M. vaginatus and S. javanicum consisted mainly of equal proportion of Man, Gal and Glc, that from P. tenue consisted mainly of arabinose, glucose and rhamnose. Arabinose was present in pyranose form, mainly alpha-L 1 --> 3 linked, with branches on C4 of almost half of the units. Glucose was responsible for the terminal units, in addition of having some units as beta1 --> 3 and some as beta1 --> 4 linked. Rhamnose was mainly 1 --> 3 linked with branches on C2 on half of the units. The carbohydrate polymer from D. olivaceus was composed mainly of beta1 --> 4 linked xylose, galactose and glucose. The galactose part was present both in beta-pyranose and -furanose forms. Arabinose in alpha-L-furanose form was mainly present as 1 --> 2 and 1 --> 2, 5 linked units, rhamnose only as alpha 1 --> 3 and xylose as beta 1 --> 4. The backbone of the polysaccharide from Nostoc sp. was composed of beta-1 --> 4 linked xylose, galactose and glucose. Most of the glucose was branched on position C6, terminal glucose and 2-O-methyl glucose units are also present. The relationship between structure, physical properties and potential biological function is discussed. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a first-principles method, we investigate the structural and electronic properties of grain boundaries (GBs) in polycrystalline CdTe and the effects of copassivation of elements with far distinct electronegativities. Of the two types of GBs studied in this Letter, we find that the Cd core is less harmful to the carrier transport, but is difficult to passivate with impurities such as Cl and Cu, whereas the Te core creates a high defect density below the conduction band minimum, but all these levels can be removed by copassivation of Cl and Cu. Our analysis indicates that for most polycrystalline systems copassivation or multipassivation is required to passivate the GBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural property of InN films grown on Ga-face GaN layers by metal-organic chemical vapor deposition has been studied by high-resolution x-ray diffraction. The mosaic tilt and twist are found to be strongly dependent on the surface lateral grain size. The twist decreases with increasing grain size and finally approaches to a constant level. On the other hand, the mosaic tilt increases substantially when the grain size becomes large enough and exceeds the width of step terraces on the GaN surface, showing an important mechanism for the defect generation in the InN/GaN system with large out-of-plane lattice mismatch. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray reflectivity curves show bi-crystal (twin) characteristics. Defect segregations at the twin boundary can be seen, whereas stress is relaxed at the edge of the boundary. Relaxation of the stress resulted in the formation of twins and other defects. As a result of the formation of such defects, a defect-free and stress-free zone or low defect density and small stress zone is created around the defects. Stress, chemical stoichiometry deviation and non-homogeneous distribution of impurities are the key factors that cause twins in LEC InP crystal growth. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimentally observed X-ray reflectivity curves show bi-crystal(twin) characteristics. The study revealed that there was defect segregation at the twin boundary. Stress was relaxed at the edge of the boundary. Relaxation of the stress resulted in formation of twin and other defects. As a result of formation of such defects, a defect-free and stress-free zone or low defect density and small stress zone is created around the defects. So a twin model was proposed to explain the experimental results. Stress(mainly thermal stress), chemical stoichiometry deviation and impurities nonhomogeneous distributions are the key factors that cause twins in LEC InP crystal growth. Twins on (111) face in LEC InP crystal were studied. Experimental evidence of above mentioned twin model and suggestions on how to get twin-free LEC InP single crystals will be discussed.