994 resultados para few-cycle ultrashort laser pulses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the high-energy flat-top supercontinuum covering the mid-infrared wavelength range of 1.9-2.5 μm as well as electronically tunable femtosecond pulses between 1.98-2.22 μm directly from the thulium-doped fiber laser amplifier. Comparison of experimental results with numerical simulations confirms that both sources employ the same nonlinear optical mechanism - Raman soliton frequency shift occurring inside the Tm-fiber amplifier. To illustrate that, we investigate two versions of the compact diode-pumped SESAM mode-locked femtosecond thulium-doped all-silica-fiber-based laser system providing either broadband supercontinuum or tunable Raman soliton output, depending on the parameters of the system. The first system operates in the Raman soliton regime providing femtosecond pulses tunable between 1.98-2.22 μm. Wide and continuous spectral tunability over 240 nm was realized by changing only the amplifier pump diode current. The second system generates high-energy supercontinuum with the superior spectral flatness of better than 1 dB covering the wavelength range of 1.9-2.5 μm, with the total output energy as high as 0.284 μJ, the average power of 2.1 W at 7.5 MHz repetition rate. We simulate the amplifier operation in the Raman soliton self-frequency shift regime and discuss the role of induced Raman scattering in supercontinuum formation inside the fiber amplifier. We compare this system with a more traditional 1.85-2.53 μm supercontinuum source in the external highly-nonlinear commercial chalcogenide fiber using the Raman soliton MOPA as an excitation source. The reported systems1 can be readily applied to a number of industrial applications in the mid-IR, including sensing, stand-off detection, medical surgery and fine material processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mainstream electrical stimulation therapies, e.g., spinal cord stimulation (SCS) and deep brain stimulation, use pulse trains that are delivered at rates no higher than 200 Hz. In recent years, stimulation of nerve fibers using kilohertz-frequency (KHF) signals has received increased attention due to the potential to penetrate deeper in the tissue and to the ability to block conduction of action potentials. As well, there are a growing number of clinical applications that use KHF waveforms, including transcutaneous electrical stimulation (TES) for overactive bladder and SCS for chronic pain. However, there is a lack of fundamental understanding of the mechanisms of action of KHF stimulation. The goal of this research was to analyze quantitatively KHF neurostimulation.

We implemented a multilayer volume conductor model of TES including dispersion and capacitive effects, and we validated the model with in vitro measurements in a phantom constructed from dispersive materials. We quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. In addition, we performed in vivo experiments and applied direct stimulation to the sciatic nerve of cats and rats. We measured electromyogram and compound action potential activity evoked by pulses, TAMS and modified versions of TAMS in which we varied the amplitude of the carrier. Nerve fiber activation using TAMS showed no difference with respect to activation with conventional pulse for carrier frequencies of 20 kHz and higher, regardless the size of the carrier. Therefore, TAMS with carrier frequencies >20 kHz does not offer any advantage over conventional pulses, even with larger amplitudes of the carrier, and this has implications for design of waveforms for efficient and effective TES.

We developed a double cable model of a dorsal column (DC) fiber to quantify the responses of DC fibers to a novel KHF-SCS signal. We validated the model using in vivo recordings of the strength-duration relationship and the recovery cycle of single DC fibers. We coupled the fiber model to a model of SCS in human and applied the KHF-SCS signal to quantify thresholds for activation and conduction block for different fiber diameters at different locations in the DCs. Activation and block thresholds increased sharply as the fibers were placed deeper in the DCs, and decreased for larger diameter fibers. Activation thresholds were > 5 mA in all cases and up to five times higher than for conventional (~ 50 Hz) SCS. For fibers exhibiting persistent activation, the degree of synchronization of the firing activity to the KHF-SCS signal, as quantified using the vector strength, was low for a broad amplitude range, and the dissimilarity between the activities in pairs of fibers, as quantified using the spike time distance, was high and decreased for more closely positioned fibers. Conduction block thresholds were higher than 30 mA for all fiber diameters at any depth and well above the amplitudes used clinically (0.5 – 5 mA). KHF-SCS appears to activate few, large, superficial fibers, and the activated fibers fire asynchronously to the stimulation signal and to other activated fibers.

The outcomes of this work contribute to the understanding of KHF neurostimulation by establishing the importance of the tissue filtering properties on the distribution of potentials, assessing quantitatively the impact of KHF stimulation on nerve fiber excitation, and developing and validating a detailed model of a DC fiber to characterize the effects of KHF stimulation on DC axons. The results have implications for design of waveforms for efficient and effective nerve fiber stimulation in the peripheral and central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La fluoration artificielle de l’eau est une méthode employée en tant que moyen de prévention de la carie dentaire. Il s’agit d’un traitement de l’eau dont le but est d’ajuster de façon « optimale » la concentration en fluorure dans l’eau potable pour la prévention de la carie dentaire, par l’ajout d’un composé fluoré. La fluoration de l’eau fait l’objet d’un débat de société depuis le début des années 1950. La théorie du cycle hydrosocial nous invite à réfléchir sur la manière dont l’eau et la société se définissent et se redéfinissent mutuellement dans le temps et dans l’espace. Cette théorie nous permet d’aborder l’étude du sujet de la fluoration avec une nouvelle perspective d’analyse. Il y a peu d’études en sciences sociales qui portent sur le sujet de la fluoration, généralement abordé d’un point de vue des sciences de la santé. Nous proposons de décrire le processus de production des eaux fluorées dans un contexte hydrosocial. Ce mémoire est structuré en quatre chapitres. Nous commençons par familiariser le lecteur avec la théorie du cycle hydrosocial. Ensuite, nous faisons une mise en contexte de la fluoration de l’eau, d’une part en présentant un état des lieux, et d’autre part en présentant ce en quoi consiste la pratique de la fluoration de l’eau. Après avoir familiarisé le lecteur avec les thèmes généraux concernant la fluoration de l’eau, nous proposons de reconstituer une histoire hydrosociale de la fluoration. Cette histoire nous permet de mettre en évidence les relations hydrosociales desquelles découle la production des eaux fluorées. L’histoire hydrosociale de la fluoration comporte une phase contemporaine que nous abordons en présentant les principales idées de l’opposition à la fluoration artificielle de l’eau à l’aide notamment d’une analyse iconographique d’images portant sur le thème de la fluoration. Finalement, nous discutons des implications de la théorie du cycle hydrosocial pour étudier la problématique de la fluoration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruses are a major cause of coccolithophore bloom demise in both temperate and sub-temperate oceanic regions. Most infection studies on coccolithoviruses have been conducted with a single virus strain, and the effect of intragenus competition by closely related coccolithoviruses has been ignored. Here we conducted combined infection experiments, infecting Emiliania huxleyi CCMP 2090 with two coccolithoviruses: EhV-86 and EhV-207 both simultaneously and independently. EhV-207 displayed a shorter lytic cycle and increased production potential than EhV-86 and was remarkably superior under competitive conditions. Although the viruses displayed identical adsorption kinetics in the first 2 h post infection, EhV-207 gained a numerical advantage as early as 8 h post infection. Quantitative polymerase chain reaction (PCR) revealed that when infecting in combination, EhV-207 was not affected by the presence of EhV-86, whereas EhV-86 was quickly out-competed, and a significant reduction in free and cell-associated EhV-86 was seen as early as 2 days after the initial infection. The observation of such clear phenotypic differences between genetically distinct, yet similar, coccolithovirus strains, by flow cytometry and quantitative real-time PCR allowed tentative links to the burgeoning genomic, transcriptomic and metabolic data to be made and the factors driving their selection, in particular to the de novo coccolithovirus-encoded sphingolipid biosynthesis pathway. This work illustrates that, even within a family, not all viruses are created equally, and the potential exists for relatively small genetic changes to infer disproportionately large competitive advantages for one coccolithovirus over another, ultimately leading to a few viruses dominating the many.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruses are a major cause of coccolithophore bloom demise in both temperate and sub-temperate oceanic regions. Most infection studies on coccolithoviruses have been conducted with a single virus strain, and the effect of intragenus competition by closely related coccolithoviruses has been ignored. Here we conducted combined infection experiments, infecting Emiliania huxleyi CCMP 2090 with two coccolithoviruses: EhV-86 and EhV-207 both simultaneously and independently. EhV-207 displayed a shorter lytic cycle and increased production potential than EhV-86 and was remarkably superior under competitive conditions. Although the viruses displayed identical adsorption kinetics in the first 2 h post infection, EhV-207 gained a numerical advantage as early as 8 h post infection. Quantitative polymerase chain reaction (PCR) revealed that when infecting in combination, EhV-207 was not affected by the presence of EhV-86, whereas EhV-86 was quickly out-competed, and a significant reduction in free and cell-associated EhV-86 was seen as early as 2 days after the initial infection. The observation of such clear phenotypic differences between genetically distinct, yet similar, coccolithovirus strains, by flow cytometry and quantitative real-time PCR allowed tentative links to the burgeoning genomic, transcriptomic and metabolic data to be made and the factors driving their selection, in particular to the de novo coccolithovirus-encoded sphingolipid biosynthesis pathway. This work illustrates that, even within a family, not all viruses are created equally, and the potential exists for relatively small genetic changes to infer disproportionately large competitive advantages for one coccolithovirus over another, ultimately leading to a few viruses dominating the many.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Short intense pulses of fast neutrons were produced in a two stage laser-driven experiment. Protons were accelerated by means of the Target Normal Sheath Acceleration (TNSA) method using the TITAN facility at the Lawrence Livermore National Laboratory. Neutrons were obtained following interactions of the protons with a secondary lithium fluoride (LiF) target. The properties of the neutron flux were studied using BC-400 plastic scintillation detectors and the neutron time of flight (nTOF) technique. The detector setup and the experimental conditions were simulated with the Geant4 toolkit. The effects of different components of the experimental setup on the nTOF were studied. Preliminary results from a comparison between experimental and simulated nTOF distributions are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few micron and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of
relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optics is a broad field of research and technology that encompasses subject matter in the field of Physics, Chemistry, and Engineering. It is the branch of Optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed at very high light intensities. This area has applications in all optical and electro optical devices used for communication, optical storage and optical computing. Many nonlinear optical effects have proved to be versatile probes for understanding basic and applied problems. Nonlinear optical devices use nonlinear dependence of refractive index or absorption coefficient on the applied field. These nonlinear optical devices are passive devices and are referred to as intelligent or smart materials owing to the fact that the sensing, processing and activating functions required for optical processes are inherent to them which are otherwise separate in dynamic devices.The large interest in nonlinear optical crystalline materials has been motivated by their potential use in the fabrication of all-optical photonic devices. Transparent crystalline materials can exhibit different kinds of optical nonlinearities which are associated with a nonlinear polarization. The choice of the most suitable crystal material for a given application is often far from trivial; it should involve the consideration of many aspects. A high nonlinearity for frequency conversion of ultra-short pulses does not help if the interaction length is strongly limited by a large group velocity mismatch and the low damage threshold limits the applicable optical intensities. Also, it can be highly desirable to use a crystal material which can be critically phasematched at room temperature. Among the different types of nonlinear crystals, metal halides and tartrates have attracted due to their importance in photonics. Metal halides like lead halides have drawn attention because they exhibit interesting features from the stand point of the electron-lattice interaction .These materials are important for their luminescent properties. Tartrate single crystals show many interesting physical properties such as ferroelectric, piezoelectric, dielectric and optical characteristics. They are used for nonlinear optical devices based on their optical transmission characteristics. Among the several tartrate compounds, Strontium tartrate, Calcium tartrate and Cadmium tartrate have received greater attention on account of their ferroelectric, nonlinear optical and spectral characteristics. The present thesis reports the linear and nonlinear aspects of these crystals and their potential applications in the field of photonics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perturbation of natural ecosystems, namely by increasing freshwater use and its degradative use, as well as topsoil erosion by water of land-use production systems, have been emerging as topics of high environmental concern. Freshwater use has become a focus of attention in the last few years for all stakeholders involved in the production of goods, mainly agro-industrial and forest-based products, which are freshwater-intensive consumers, requiring large inputs of green and blue water. This thesis presents a global review on the available Water Footprint Assessment and Life Cycle Assessment (LCA)-based methods for measuring and assessing the environmental relevance of freshwater resources use, based on a life cycle perspective. Using some of the available midpoint LCA-based methods, the freshwater use-related impacts of a Portuguese wine (white ‘vinho verde’) were assessed. However, the relevance of environmental green water has been neglected because of the absence of a comprehensive impact assessment method associated with green water flows. To overcome this constraint, this thesis helps to improve and enhance the LCA-based methods by providing a midpoint and spatially explicit Life Cycle Impact Assessment (LCIA) method for assessing impacts on terrestrial green water flow and addressing reductions in surface blue water production caused by reductions in surface runoff due to land-use production systems. The applicability of the proposed method is illustrated by a case study on Eucalyptus globulus conducted in Portugal, as the growth of short rotation forestry is largely dependent on local precipitation. Topsoil erosion by water has been characterised as one of the most upsetting problems for rivers. Because of this, this thesis also focuses on the ecosystem impacts caused by suspended solids (SS) from topsoil erosion that reach freshwater systems. A framework to conduct a spatially distributed SS delivery to freshwater streams and a fate and effect LCIA method to derive site-specific characterisation factors (CFs) for endpoint damage on aquatic ecosystem diversity, namely on algae, macrophyte, and macroinvertebrates organisms, were developed. The applicability of this framework, combined with the derived site-specific CFs, is shown by conducting a case study on E. globulus stands located in Portugal as an example of a land use based system. A spatially explicit LCA assessment was shown to be necessary, since the impacts associated with both green water flows and SS vary greatly as a function of spatial location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La fluoration artificielle de l’eau est une méthode employée en tant que moyen de prévention de la carie dentaire. Il s’agit d’un traitement de l’eau dont le but est d’ajuster de façon « optimale » la concentration en fluorure dans l’eau potable pour la prévention de la carie dentaire, par l’ajout d’un composé fluoré. La fluoration de l’eau fait l’objet d’un débat de société depuis le début des années 1950. La théorie du cycle hydrosocial nous invite à réfléchir sur la manière dont l’eau et la société se définissent et se redéfinissent mutuellement dans le temps et dans l’espace. Cette théorie nous permet d’aborder l’étude du sujet de la fluoration avec une nouvelle perspective d’analyse. Il y a peu d’études en sciences sociales qui portent sur le sujet de la fluoration, généralement abordé d’un point de vue des sciences de la santé. Nous proposons de décrire le processus de production des eaux fluorées dans un contexte hydrosocial. Ce mémoire est structuré en quatre chapitres. Nous commençons par familiariser le lecteur avec la théorie du cycle hydrosocial. Ensuite, nous faisons une mise en contexte de la fluoration de l’eau, d’une part en présentant un état des lieux, et d’autre part en présentant ce en quoi consiste la pratique de la fluoration de l’eau. Après avoir familiarisé le lecteur avec les thèmes généraux concernant la fluoration de l’eau, nous proposons de reconstituer une histoire hydrosociale de la fluoration. Cette histoire nous permet de mettre en évidence les relations hydrosociales desquelles découle la production des eaux fluorées. L’histoire hydrosociale de la fluoration comporte une phase contemporaine que nous abordons en présentant les principales idées de l’opposition à la fluoration artificielle de l’eau à l’aide notamment d’une analyse iconographique d’images portant sur le thème de la fluoration. Finalement, nous discutons des implications de la théorie du cycle hydrosocial pour étudier la problématique de la fluoration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-induced room temperature luminescence of air-equilibrated benzophenone/O-propylated p-tert-butylcalix[ 4] arene solid powdered samples revealed the existence of a novel emission, in contrast with benzophenone/p-tertbutylcalix[ 4] arene complexes, where only benzophenone emits. This novel emission was identified as phosphorescence of 1-phenyl-1,2-propanedione, which is formed as the result of an hydrogen atom abstraction reaction of the triplet excited benzophenone from the propoxy substituents of the calixarene. Room temperature phosphorescence was obtained in air-equilibrated samples in all propylated hosts. The decay times of the benzophenone emission vary greatly with the degree of propylation, the shortest lifetimes being obtained in the tri- and tetrapropylated calixarenes. Triplet - triplet absorption of benzophenone was detected in all cases, and is the predominant absorption in the p-tert-butylcalix[ 4] arene case, where an endo-calix complex is formed. Benzophenone ketyl radical formation occurs with the O-propylated p-tert-butylcalix[ 4] arenes hosts, suggesting a different type of host/guest molecular arrangement. Diffuse reflectance laser. ash photolysis and gas chromatography - mass spectrometry techniques provided complementary information, the former about transient species and the latter regarding the final products formed after light absorption. Product analysis and identification clearly show that the two main degradation photoproducts following laser excitation in the propylated substrates are 1-phenyl-1,2- propanedione and 2- hydroxybenzophenone, although several other minor photodegradation products were identified. A detailed mechanistic analysis is proposed. While the solution photochemistry of benzophenone is dominated by the hydrogen abstraction reaction from suitable hydrogen donors, in these solid powdered samples, the alpha-cleavage reaction also plays an important role. This finding occurs even with one single laser pulse which lasts only a few nanoseconds, and is apparently related to the fact that scattered radiation exists, due to multiple internal reflections possibly trapping light within non-absorbing microcrystals in the sample, and is detected until at least 20 mus after the laser pulse. This could explain how photoproducts thus formed could also be excited with only one laser pulse.