980 resultados para drug cytotoxicity
Resumo:
Discovery and development of new pharmaceuticals from marine organisms are attracting increasing interest. Several agents derived from marine organisms are under preclinical and clinical evaluation as potential anticancer drugs. We extracted and purified a novel anti-tumor protein from the coelomic fluid of Meretrix meretrix Linnaeus by ammonium sulphate fractionation, ion exchange and hydrophobic interaction chromatography. The molecular weight of the highly purified protein, designated MML, was 40 kDa as determined by SDS-PAGE analysis. MML exhibited significant cytotoxicity to several cancer cell types, including human hepatoma BEL-7402, human breast cancer MCF-7 and human colon cancer HCT116 cells. However, no inhibitory effect was found when treating murine normal fibroblasts NIH3T3 and benign human breast MCF-10A cells with MML. The cell death induced by MML was characterized by cell morphological changes. The induction of apoptosis of BEL-7402 cells by MML was weak by DNA ladder assay. The possible mechanisms of its anti-tumor effect might be the changes in cell membrane permeability and inhibition of tubulin polymerization. MML may be developed as a novel, highly selective and effective anti-cancer drug.
Resumo:
A rapid and sensitive liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) assay for the determination of five pharmacologically active compounds (PAC) extracted from the traditional Chinese medicine, Rhodiola , namely salidroside, tyrosol, rhodionin, gallic acid, and ethyl gallate has been developed. In this method, PAC could be baseline separated and detected with DAD at 275 nm. The validation of the method, including sensitivity, linearity, repeatability, and recovery, was examined. The linear calibration curves were acquired with correlation coefficient >0.999 and the limits of detection LOD (at a signal-to-noise ratio=3:1) were between 0.058 and 1.500 mu mol/L. It was found, that the amounts of PAC varied with different species of Rhodiola . The established method is rapid and reproducible for the separation of five natural pharmacologically active compounds from extracts of Rhodiola with satisfactory results.
Resumo:
A rapid capillary electrophoresis method for the separation of five natural pharmacologically active compounds from extracted Rhodiola, namely salidroside, tyrosol, rhodionin, gallic acid and ethyl gallate has been developed. The separation of five natural pharmacologically active compounds was carried out in a fused-silica capillary with 14 mM boric acid, 30 mM SDS and 2.5% acetonitrile, adjusted to pH 10.7 with NaOH. Applied potential was 21 kV. The temperature of the capillary was maintained at 25 degreesC by the instrument thermostating system, with the correlation coefficients of 0.9805-0.9989 for migration time, and relative standards of < 3.52% for peak areas. The established method is rapid and reproducible for the separation of five natural pharmacologically compounds from extracts of Rhodiola with satisfactory results.
Resumo:
Drug-protein binding is an important process in determining the activity and fate of a pharmaceutical agent once it has entered the body. This review examines the method of microdialysis combined with high-performance liquid chromatography (HPLC) that has been developed;by ours to study such interactions, in which the microdialysis was applied to sample the free drug in the mixed solution of drug with protein, and HPLC to quantify the concentration of free drug in the microdialysate. This technique has successfully been used for determining various types of binding interactions between the low affinity drugs, high affinity drugs and enantiomers to HSA. For the case of competitive binding of two drugs to a protein in solution, a displacement equation has been derived and examined with four nonsteroidal anti-inflammatory drugs and HSA as model drugs and protein, respectively. Microdialysis with HPLC was adopted to determine simultaneously the free solute and displacing agent in drug-protein solutions. The method is able to locate the binding site and determine affinity constants even up to 10(7) L/mol accurately.
Resumo:
The interaction between drugs and human serum albumin (HSA) was investigated by capillary electrophoresis (CE). It involves stereoselectivity, drug displacement and synergism effects. Under protein-drug binding equilibrium, the unbound concentrations of drug enantiomers were measured by frontal analysis (FA). The stereoselectivity of verapamil (VER) binding to HSA was proved by the different free fractions of two enantiomers. In physiological pH (7.4, ionic strength 0.17 phosphate buffer) when 300 mu M (+/-) VER were equilibrated with 500 mu M HSA, the concentration of unbound S-VER was about 1.7 times its antipode. The binding constants of two enantiomers, KR-VER and KS-VER, were 2670 and 850 M-1, respectively. However, no obvious stereoselective binding of propranolol (PRO) to HSA was observed. Trimethyl-beta-cyclodextrin (45 mM) was used as a chiral selector in pH 2.5 phosphate buffer. Several drug systems were studied by the method. When ibuprofen (IBU) was added into VER-HSA solution. R-VER was partially displaced while S-VER was not displaced at all. A binding synergism effect between bupivacaine (BUP) and verapamil was observed and further study suggested that verapamil and bupivacaine occupy different binding site of HSA (site II and site III, respectively).
Resumo:
Based on the chiral separation of several basic drugs, dimetindene, tetryzoline, theodrenaline and verapamil, the liquid pre-column capillary electrophoresis (LPC-CE) technique was established. It was used to determine free concentrations of drug enantiomers in mixed solutions with human serum albumin (HSA). To prevent HSA entering the CE chiral separation zone, the mobility differences between HSA and drugs under a specific pH condition were employed in the LPC. Thus, the detection confusion caused by protein was totally avoided. Further study of binding constants determination and protein binding competitions was carried out. The study proves that the LPC technique could be used for complex media, particularly the matrix of protein coexisting with a variety of drugs.
Resumo:
Enot, D. and King, R. D. (2003) Application of Inductive Logic Programming to Structure-Based Drug Design. 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD '03). Springer LNAI 2838 p156-167
Resumo:
David P. Enot and Ross D. King (2003). Structure based drug design with inductive logic programming. The ACS National Meeting Spring 2003, New Orleans
Resumo:
David P. Enot and Ross D. King (2002) The use of Inductive Logic Programming in drug design. Proceedings of the 14th EuroQSAR Symposium (EuroQSAR 2002). Blackwell Publishing, p247-250
Resumo:
Oxysterols are products of cholesterol oxidation, which may be produced endogenously or may be absorbed from the diet where they are commonly found in foods of animal origin. Oxysterols are known to be cyctotoxic to cells in culture and mode of toxicity has been identified as apoptosis in certain cell lines. The cytotoxicity of the oxysterols 25-hydroxycholesterol (25-OH) and 7β-hydroxycholesterol (7β-OH) was examined in two human cell lines, HepG2, a hepatoma cell line, and U937, a monocytic cell line. Both 25-OH and 7β-OH were cytotoxic to the HepG2 cell line but apoptotic cells were not detected and it was concluded that cells underwent necrosis. 25-OH was not cytotoxic to the U937 cell line but it was found to have a cytostatic effect. 7β-OH was shown to induce apoptosis in the U937 line. The mechanism of oxysterol-induced apoptosis has not yet been fully elucidated, however the generation of an oxidative stress and the depletion of glutathione have been associated with the initial stages of the apoptotic process. The concentration of cellular antioxidant enzyme, superoxide dismutase (SOD) was increased in association with 7β-OH induced apoptosis in the U937 cell line. There was no change in the glutathione concentration or the SOD activity of HepG2 cells, which underwent necrosis in the presence of 7β-OH. Many apoptotic pathways center on the activation of caspase-3, which is the key executioner protease of apoptosis. Caspase-3 activity was also shown to increase in association with 7β-OH-induced apoptosis in U937 cells but there was no significant increase in caspase-3 activity in HepG2 cells. DNA fragmentation is regarded as the biochemical hallmark of apoptosis, therefore the comet assay as a measure of DNA fragmentation was assessed as a measure of apoptosis. The level of DNA fragmentation induced by 7β-OH, as measured using the comet assay, was similar for both cell lines. Therefore, it was concluded that the comet assay could not be used to distinguish between 7β-OH-induced apoptosis in U937 cells and 7β-OH-induced necrosis in HepG2 cells. The cytotoxicity and apoptotic potency of oxysterols 25-OH, 7β-OH, cholesterol- 5a,6a-epoxide (a-epoxide), cholesterol-5β,6β-epoxide (β-epoxide), 19-hydroxy-cholesterol (19-OH), and 7-ketocholesterol (7-keto) was compared in the U937 cell line. 7 β-OH, β-epoxide and 7-keto were found to induce apoptosis in U937 cells. 7β-OH-induced apoptosis was associated with a decrease in the cellular glutathione concentration and an increase in SOD activity, 7-keto and β-epoxide did not affect the glutathione concentration or the SOD activity of the cells.a-Epoxide, 19-OH and 25-OH were not cytotoxic to the U937 cell line.
Resumo:
This thesis details the design and implementation of novel chemical routes towards a series of highly propitious 7-azaindolyl derivatives of the indolocarbazole (ICZ) and bisindolylmaleimide (BIM) families, with subsequent evaluation for use as cancer chemotherapeutic agents. A robust synthetic strategy was devised to allow the introduction of a 7-azaindolyl moiety into our molecular template. This approach allowed access to a wide range of β-keto ester and β-keto nitrile intermediates. Critical analysis identified F-ring modulation as a major theme towards the advancement of ICZ and BIM derivatives in drug therapy. Thus, the employment of cyclocondensation methodology furnished a number of novel aminopyrazole, isoxazolone, pyrazolone and pyrimidinone analogues, considerably widening the scope of the prevalent maleimide functionality. Photochemical cyclisation provided for the first reported aza ICZ containing a six-membered F-ring. Another method towards achieving the aza ICZ core involved use of a Perkin-type condensation approach, with chemical elaboration of the headgroup instigated post-aromatisation. Subsequent use of a modified Lossen rearrangement allowed access to further analogues containing a six-membered F-ring. Extensive screening of the novel aza ICZ and BIM derivatives was carried out against the NCI-60 cancer cell array, with nine prospective candidates selected for continued biological evaluation. From these assays, a number of compounds were shown to inhibit cancer cell growth at concentrations of below 10 nM. Indeed, the most active aza ICZ tested is currently under assessment by the Biological Evaluation Committee of the NCI due to excellent antiproliferative activity demonstrated across the panel of cell lines, with a mean GI50 of 34 nM, a mean total growth inhibition (TGI) of 4.6 μM and a mean cytotoxicity (LC50) of 63.1 μM. Correlation to known topoisomerase I (topo I) inhibitors was revealed by COMPARE analysis, and subsequent topo I-mediated DNA cleavage assays showed inhibitory activity below 1 μM for several derivatives.
Resumo:
Depression is among the leading causes of disability worldwide. Currently available antidepressant drugs have unsatisfactory efficacy, with up to 60% of depressed patients failing to respond adequately to treatment. Emerging evidence has highlighted a potential role for the efflux transporter P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), in the aetiology of treatment-resistant depression. In this thesis, the potential of P-gp inhibition as a strategy to enhance the brain distribution and pharmacodynamic effects of antidepressant drugs was investigated. Pharmacokinetic studies demonstrated that administration of the P-gp inhibitors verapamil or cyclosporin A (CsA) enhanced the BBB transport of the antidepressants imipramine and escitalopram in vivo. Furthermore, both imipramine and escitalopram were identified as transported substrates of human P-gp in vitro. Contrastingly, human P-gp exerted no effect on the transport of four other antidepressants (amitriptyline, duloxetine, fluoxetine and mirtazapine) in vitro. Pharmacodynamic studies revealed that pre-treatment with verapamil augmented the behavioural effects of escitalopram in the tail suspension test (TST) of antidepressant-like activity in mice. Moreover, pre-treatment with CsA exacerbated the behavioural manifestation of an escitalopram-induced mouse model of serotonin syndrome, a serious adverse reaction associated with serotonergic drugs. This finding highlights the potential for unwanted side-effects which may occur due to increasing brain levels of antidepressants by P-gp inhibition, although further studies are needed to fully elucidate the mechanism(s) at play. Taken together, the research outlined in this thesis indicates that P-gp may restrict brain concentrations of escitalopram and imipramine in patients. Moreover, we show that increasing the brain distribution of an antidepressant by P-gp inhibition can result in an augmentation of antidepressant-like activity in vivo. These findings raise the possibility that P-gp inhibition may represent a potentially beneficial strategy to augment antidepressant treatment in clinical practice. Further studies are now warranted to evaluate the safety and efficacy of this approach.