924 resultados para droplet actuation
Resumo:
The surface and interface morphologies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) thin-film blends and bilayers were investigated by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy. Spin-coating a drop of a PS solution directly onto a PMMA bottom layer from a common solvent for both polymers yielded lateral domains that exhibited a well-defined topographical structure. Two common solvents were used in this study. The structure of the films changed progressively as the concentration of the PS solution was varied. The formation of the blend morphology could be explained by the difference in the solubility of the two polymers in the solvent and the dewetting of PS-rich domains from the PMMA-rich phase. Films of the PS/PMMA blend and bilayer were annealed at temperatures above their glass-transition temperatures for up to 70 h. All samples investigated with AFM were covered with PS droplets of various size distributions. Moreover, we investigated the evolution of the annealed PS/PMMA thin-film blend and bilayer and gave a proper explanation for the formation of a relatively complicated interface inside a larger PS droplet.
Resumo:
Evaporation of a droplet of silica microsphere suspension on a polystyrene and poly(methyl methacrylate) blend film with isolated holes in its surface has been exploited as a means of particles self-assembly. During the retraction of the contact line of the droplet, spontaneous dewetting combined with the strong capillary force pack the silica microspheres into the holes in the polymer surface. Complex aggregates of colloids are formed after being exposed to acetone vapor. The morphology evolution of the underlying polymer film by exposure to acetone solvent vapor is responsible for the complex aggregates of colloids formation.
Resumo:
The electrochemical behavior of pyridine distribution at the water/1,2-dichloroethane interface with variable phase volume ratios (r=V-0/V-W) was investigated by cyclic voltammetry. The system was composed of an aqueous droplet supported on a Ag/AgCl disk electrode covered with an organic solution or an organic droplet supported on a Ag/AgTPBCl disk electrode covered with an aqueous solution. In this way, a conventional three-electrode potentiostat can be used to study an ionizable compound transfer process at a liquid/liquid interface with a wide range of phase volume ratios (from 0.0004 to 1 and from 1 to 2500). Using this special cell we designed, only very small volumes of both phase were needed for r equal to unity, which is very useful for the investigation of the distribution of ionizable species at a biphasic system when the available amount of species is limited. The ionic partition diagrams were obtained for different phase volume ratios.
Resumo:
The electrochemical behavior of ionizable drugs (Amitriptyline, Diphenhydramine and Trihexyphenedyl) at the water/1,2-dichloroethane interface with the phase volume ratio (r = V-o/V-w) equal to 1 are investigated by cyclic voltammetry. The system is composed of an aqueous droplet supported at an Ag/AgCl disk electrode and it was covered with an organic solution. In this manner, a conventional three-electrode potentiostat can be used to study the ionizable drugs transfer process at a liquid/liquid interface. Physicochemical parameters such as the formal transfer potential, the Gibbs energy of transfer and the standard partition coefficients of the ionized forms of these drugs can be evaluated from cyclic voltammograms obtained. The obtained results have been summarized in ionic partition diagrams, which are a useful tool for predicting and interpreting the transfer mechanisms of ionizable drugs at the liquid/liquid interfaces and biological membranes.
Resumo:
A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.
Resumo:
A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.
Resumo:
A novel method to study electron-transfer (ET) reactions between ferrocene in 1,2-dichloroethane (DCE) and a redox couple of K3Fe(CN)(6) and K4Fe(CN)(6) in water using scanning electrochemical microscopy (SECM) with a three-electrode setup is reported. In this work, a water droplet that adheres to the Surface of a platinum disk electrode is immersed in a DCE solution. The aqueous redox couple serves both as a reference electrode on the platinum disk and as an electron donor/acceptor at the polarized liquid/liquid inter-face. With the present experimental approach, the liquid/liquid interface can be polarized externally, while the electron-transfer reactions between the two phases can be monitored independently by SECM. The apparent heterogeneous rate constants for the ET reactions were obtained by fitting the experimental approach curves to the theoretical values. These rate constants obey the Butler-Volmer theory i.e., them, are found to be potential dependent.
Resumo:
CORROSION; WATER; SPECTROSCOPY; CHLORIDE; ZINC; NUCLEATION; INTERFACE; ELECTRODE; SURFACES; GROWTH
Resumo:
CORROSION; MECHANISM; WATER; ZINC
Resumo:
利用柔索的弹性及驱动冗余性构造了一种3自由度并联柔索驱动变刚度操作臂,在静力学与刚度分析的基础上,进行刚度控制研究。首先,将柔索驱动力映射到关节空间,并分析等效关节力与柔索张力和外力的关系, 提出该操作臂的三维力矢量闭合原理。根据微分变换原理进行刚度分析,得到关节刚度矩阵及操作手刚度矩阵, 并进行数值算例分析,结果表明:刚度与柔索的张力有关,调节柔索张力可以改变系统刚度。最后,采用位置与张力混合控制的策略,对该变刚度操作臂进行了刚度控制,并进行了仿真验证。
Resumo:
设计了一种能够使蛇形机器人运动更灵巧、奇异点更少和运动能力更强的机构 ,对具有三个自由度的新型蛇形机器人单元进行了改进 ,在单元上增加被动轮机构 ,使其具有万向机构的特点。该单元不仅能够用被动轮驱动机器人运动 ,而且增加了类似于主动轮的驱动机构 ,克服了被动轮驱动能力弱的缺点 ,增强了机器人的运动能力。在分析非完整约束的基础上 ,对蛇形机器人的运动学和冗余度进行分析 ,提出了控制该类蛇形机器人运动的分解矩阵方法和分组交替运动法。
Resumo:
MEMS是当前研究的一个热点,微机器人对于发展MEMS具有重要意义,也是MEMS的一项不可缺少的内容。微动技术是机器人学理论的一个重要分支,也是发展微机器人及相关微技术的基础。目前,各种新型微驱动器层出不穷,极大地推动了微机器人技术的发展。对于微动原理进行分析,从本质上弄清微动产生的机理,不仅可以丰富机器人学理论,还有可能使微动技术产生质的飞跃。从这一角度出发,对各种微动原理加以详细分析和比较,以期得出有意义的结论。
Resumo:
微制作机器人技术是MEMS技术的一个重要分支,也是当前机器人研究领域的一个热点。本文分析了微操作机器人集成系统的特点,并针对微制作机器人系统研制中涉及的一些关键技术,如驱动、定位、检测和控制等技术进行了论述。
Resumo:
Lee, M.H. and Rowland, J.J. (eds.), 1995, Intelligent Assembly Systems, 239pp, World Scientific series in Robotics and Intelligent Systems - Vol. 12, World Scientific, ISBN 981022494X.
Resumo:
Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.