795 resultados para decision support system
Resumo:
Thrombophilia stands for a genetic or an acquired tendency to hypercoagulable states that increase the risk of venous and arterial thromboses. Indeed, venous thromboembolism is often a chronic illness, mainly in deep venous thrombosis and pulmonary embolism, requiring lifelong prevention strategies. Therefore, it is crucial to identify the cause of the disease, the most appropriate treatment, the length of treatment or prevent a thrombotic recurrence. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a logic programming approach to knowledge representation and reasoning, complemented with a case-based approach to computing. The proposed model has been quite accurate in the assessment of thrombophilia predisposition risk, since the overall accuracy is higher than 90% and sensitivity ranging in the interval [86.5%, 88.1%]. The main strength of the proposed solution is the ability to deal explicitly with incomplete, unknown, or even self-contradictory information.
Resumo:
Acute Coronary Syndrome (ACS) is transversal to a broad and heterogeneous set of human beings, and assumed as a serious diagnosis and risk stratification problem. Although one may be faced with or had at his disposition different tools as biomarkers for the diagnosis and prognosis of ACS, they have to be previously evaluated and validated in different scenarios and patient cohorts. Besides ensuring that a diagnosis is correct, attention should also be directed to ensure that therapies are either correctly or safely applied. Indeed, this work will focus on the development of a diagnosis decision support system in terms of its knowledge representation and reasoning mechanisms, given here in terms of a formal framework based on Logic Programming, complemented with a problem solving methodology to computing anchored on Artificial Neural Networks. On the one hand it caters for the evaluation of ACS predisposing risk and the respective Degree-of-Confidence that one has on such a happening. On the other hand it may be seen as a major development on the Multi-Value Logics to understand things and ones behavior. Undeniably, the proposed model allows for an improvement of the diagnosis process, classifying properly the patients that presented the pathology (sensitivity ranging from 89.7% to 90.9%) as well as classifying the absence of ACS (specificity ranging from 88.4% to 90.2%).
Resumo:
It is well known that rib cage dimensions depend on the gender and vary with the age of the individual. Under this setting it is therefore possible to assume that a computational approach to the problem may be thought out and, consequently, this work will focus on the development of an Artificial Intelligence grounded decision support system to predict individual’s age, based on such measurements. On the one hand, using some basic image processing techniques it were extracted such descriptions from chest X-rays (i.e., its maximum width and height). On the other hand, the computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters for the handling of incomplete, unknown, or even contradictory information. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The accuracy of the proposed model is satisfactory, close to 90%.
Resumo:
Plants of genus Schinus are native South America and introduced in Mediterranean countries, a long time ago. Some Schinus species have been used in folk medicine, and Essential Oils of Schinus spp. (EOs) have been reported as having antimicrobial, anti-tumoural and anti-inflammatory properties. Such assets are related with the EOs chemical composition that depends largely on the species, the geographic and climatic region, and on the part of the plants used. Considering the difficulty to infer the pharmacological properties of EOs of Schinus species without a hard experimental setting, this work will focus on the development of an Artificial Intelligence grounded Decision Support System to predict pharmacological properties of Schinus EOs. The computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters to the handling of incomplete, unknown, or even self-contradictory information. New clustering methods centered on an analysis of attribute’s similarities were used to distinguish and aggregate historical data according to the context under which it was added to the Case Base, therefore enhancing the prediction process.
Resumo:
In an organisation any optimization process of its issues faces increasing challenges and requires new approaches to the organizational phenomenon. Indeed, in this work it is addressed the problematic of efficiency dynamics through intangible variables that may support a different view of the corporations. It focuses on the challenges that information management and the incorporation of context brings to competitiveness. Thus, in this work it is presented the analysis and development of an intelligent decision support system in terms of a formal agenda built on a Logic Programming based methodology to problem solving, complemented with an attitude to computing grounded on Artificial Neural Networks. The proposed model is in itself fairly precise, with an overall accuracy, sensitivity and specificity with values higher than 90 %. The proposed solution is indeed unique, catering for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in a quantitative or qualitative arrangement.
Resumo:
It is well known that human resources play a valuable role in a sustainable organizational development. Indeed, this work will focus on the development of a decision support system to assess workers’ satisfaction based on factors related to human resources management practices. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process.
Resumo:
Knee osteoarthritis is the most common type of arthritis and a major cause of impaired mobility and disability for the ageing populations. Therefore, due to the increasing prevalence of the malady, it is expected that clinical and scientific practices had to be set in order to detect the problem in its early stages. Thus, this work will be focused on the improvement of methodologies for problem solving aiming at the development of Artificial Intelligence based decision support system to detect knee osteoarthritis. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing that caters for the handling of incomplete, unknown, or even self-contradictory information.
Resumo:
It is well known that the dimensions of the pelvic bones depend on the gender and vary with the age of the individual. Indeed, and as a matter of fact, this work will focus on the development of an intelligent decision support system to predict individual’s age based on pelvis’ dimensions criteria. On the one hand, some basic image processing technics were applied in order to extract the relevant features from pelvic X-rays. On the other hand, the computational framework presented here was built on top of a Logic Programming approach to knowledge representation and reasoning, that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.
Resumo:
A link between patterns of pelvic growth and human life history is supported by the finding that, cross-culturally, variation in maturation rates of female pelvis are correlated with variation in ages of menarche and first reproduction, i.e., it is well known that the human dimensions of the pelvic bones depend on the gender and vary with the age. Indeed, one feature in which humans appear to be unique is the prolonged growth of the pelvis after the age of sexual maturity. Both the total superoinferior length and mediolateral breadth of the pelvis continues to grow markedly after puberty, and do not reach adult proportions until the late teens years. This continuation of growth is accomplished by relatively late fusion of the separate centers of ossification that form the bones of the pelvis. Hence, in this work we will focus on the development of an intelligent decision support system to predict individual’s age based on a pelvis' dimensions criteria. Some basic image processing techniques were applied in order to extract the relevant features from pelvic X-rays, being the computational framework built on top of a Logic Programming approach to Knowledge Representation and Reasoning that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.
Resumo:
Dyscalculia is usually perceived of as a specific learning difficulty for mathematics or, more appropriately, arithmetic. Because definitions and diagnoses of dyscalculia are in their infancy and sometimes are contradictory. However, mathematical learning difficulties are certainly not in their infancy and are very prevalent and often devastating in their impact. Co-occurrence of learning disorders appears to be the rule rather than the exception. Co-occurrence is generally assumed to be a consequence of risk factors that are shared between disorders, for example, working memory. However, it should not be assumed that all dyslexics have problems with mathematics, although the percentage may be very high, or that all dyscalculics have problems with reading and writing. Because mathematics is very developmental, any insecurity or uncertainty in early topics will impact on later topics, hence to need to take intervention back to basics. However, it may be worked out in order to decrease its degree of severity. For example, disMAT, an app developed for android may help children to apply mathematical concepts, without much effort, that is turning in itself, a promising tool to dyscalculia treatment. Thus, this work will focus on the development of a Decision Support System to estimate children evidences of dyscalculia, based on data obtained on-the-fly with disMAT. The computational framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, grounded on a Case-based approach to computing, that allows for the handling of incomplete, unknown, or even self-contradictory information.
Resumo:
The AntiPhospholipid Syndrome (APS) is an acquired autoimmune disorder induced by high levels of antiphospholipid antibodies that cause arterial and veins thrombosis, as well as pregnancy-related complications and morbidity, as clinical manifestations. This autoimmune hypercoagulable state, usually known as Hughes syndrome, has severe consequences for the patients, being one of the main causes of thrombotic disorders and death. Therefore, it is required to be preventive; being aware of how probable is to have that kind of syndrome. Despite the updated of antiphospholipid syndrome classification, the diagnosis remains difficult to establish. Additional research on clinically relevant antibodies and standardization of their quantification are required in order to improve the antiphospholipid syndrome risk assessment. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a Logic Programming approach to knowledge representation and reasoning, complemented with a computational framework based on Artificial Neural Networks. The proposed model allows for improving the diagnosis, classifying properly the patients that really presented this pathology (sensitivity higher than 85%), as well as classifying the absence of APS (specificity close to 95%).
Resumo:
Water is one of the most important factors influencing crop production in rainfed cropping systems. In tropical regions, supplemental irrigation reduces the risk of yield losses associated to water deficit due to insufficient rainfall. Water deficit in regions with irregularities in rainfall may be overcome with the use of supplemental irrigation, a technique based on the application of water at amounts below the crop?s evapotranspiration (ETc). We investigated the potential of supplemental irrigation as a strategy to increase yield of maize grown under tropical conditions. We used the CSM-CERES-Maize model of the Decision Support System for Agrotechnology Transfer (DSSAT) to simulate irrigation strategies of maize in six counties in the state of Minas Gerais, Brazil. Our results indicate significant differences on simulated crop yield in response to supplemental irrigation. As a consequence, water productivity was improved with reductions of 10% and 15% of full irrigation depths in one of the six counties while in two the water productivity was higher when full irrigation was applied.
Resumo:
Objetivou-se avaliar o potencial do modelo CROPGRO, inserido no DSSAT v.4,0 (Decision Support System for Agrotechnology Transfer) para simular o carbono no solo, no sistema plantio direto. Os dados foram coletados na Estação Experimental da Universidade Federal do Rio Grande do Sul (EEA/UFRGS), em Eldorado do Sul, durante o ano agrícola 2003/04, num delineamento em faixas, em Argissolo Vermelho distrófico típico. A semeadura da soja (cv. Fepagro RS10 - ciclo longo) ocorreu em 20/11/03 para uma população inicial em torno de 300 mil plantas ha-1. Foram utilizados dois sistemas de manejo do solo: preparo convencional (PC) e sistema plantio direto (PD) irrigados (I) e não irrigados (NI). Foram inseridos no DSSAT dados edáficos, meteorológicos diários e da cultura. Adotou-se o método Ceres, no CROPGROSoja para simular o teor de carbono (C) no solo. As simulações mostraram que há maior estoque de C em plantio direto irrigado em relação ao preparo convencional, demonstrando sensibilidade do CROPGRO-Soja ao manejo do solo. Os mais elevados resíduos de C em solo sob plantio direto evidenciam mitigações de emissões desse gás para a atmosfera em cultivos na região estudada.
Resumo:
Power system restoration after a large area outage involves many factors, and the procedure is usually very complicated. A decision-making support system could then be developed so as to find the optimal black-start strategy. In order to evaluate candidate black-start strategies, some indices, usually both qualitative and quantitative, are employed. However, it may not be possible to directly synthesize these indices, and different extents of interactions may exist among these indices. In the existing black-start decision-making methods, qualitative and quantitative indices cannot be well synthesized, and the interactions among different indices are not taken into account. The vague set, an extended version of the well-developed fuzzy set, could be employed to deal with decision-making problems with interacting attributes. Given this background, the vague set is first employed in this work to represent the indices for facilitating the comparisons among them. Then, a concept of the vague-valued fuzzy measure is presented, and on that basis a mathematical model for black-start decision-making developed. Compared with the existing methods, the proposed method could deal with the interactions among indices and more reasonably represent the fuzzy information. Finally, an actual power system is served for demonstrating the basic features of the developed model and method.
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^