931 resultados para cryptographic pairing computation, elliptic curve cryptography
Resumo:
[EN]The application of the Isogeometric Analysis (IA) with T-splines [1] demands a partition of the parametric space, C, in a tiling containing T-junctions denominated T-mesh. The T-splines are used both for the geometric modelization of the physical domain, D, and the basis of the numerical approximation. They have the advantage over the NURBS of allowing local refinement. In this work we propose a procedure to construct T-spline representations of complex domains in order to be applied to the resolution of elliptic PDE with IA. In precedent works [2, 3] we accomplished this task by using a tetrahedral parametrization…
Resumo:
In questo studio vengono riportati i risultati di prove di fatica oligociclica eseguiti su provini dello stesso materiale ottenuti con uguali processi tecnologici ma provenienti da differenti colate di metallo. Il materiale in questione è un acciaio di elevata qualità frequentemente utilizzato per la realizzazione di cappe per turboalternatori. Obiettivo dello studio è stato ricavare i coefficienti necessari per tracciare le curve di fatica del materiale, non ancora presenti in letteratura, ed infine indagare la bontà del risultato ottenuto con un’analisi statistica delle curve e dei risultati ottenuti. Nella prima parte è descritto l’attuale stato dell’arte e la situazione in cui si colloca il presente studio. Nella seconda parte viene fornita una descrizione dettagliata del materiale studiato, delle condizioni nelle quali sono state eseguite le prove e delle attrezzature utilizzate a tale scopo. Si conclude esponendo i risultati ottenuti, comprensivi dei confronti e delle considerazioni derivate dalle analisi statistiche eseguite.
Resumo:
In this work we introduce an analytical approach for the frequency warping transform. Criteria for the design of operators based on arbitrary warping maps are provided and an algorithm carrying out a fast computation is defined. Such operators can be used to shape the tiling of time-frequency plane in a flexible way. Moreover, they are designed to be inverted by the application of their adjoint operator. According to the proposed mathematical model, the frequency warping transform is computed by considering two additive operators: the first one represents its nonuniform Fourier transform approximation and the second one suppresses aliasing. The first operator is known to be analytically characterized and fast computable by various interpolation approaches. A factorization of the second operator is found for arbitrary shaped non-smooth warping maps. By properly truncating the operators involved in the factorization, the computation turns out to be fast without compromising accuracy.
Resumo:
Il primo capitolo espone nozioni generali sulle varietà e sulle curve algebriche, sulle mappe fra di esse e su alcune proprietà geometriche importanti per caratterizzare le curve ellittiche. Il secondo capitolo propone un'introduzione allo studio geometrico e algebrico di tali curve. Il terzo e il quarto capitolo affrontano lo studio dei punti a coordinate razionali, per curve definite prima su campi locali e poi su campi globali: l'insieme di tali punti è un gruppo. Il risultato fondamentale, contenuto nel teorema di Mordell-Weil, è che tale gruppo è finitamente generato. Tutto il quarto capitolo propone i risultati necessari per la dimostrazione di tale affermazione.
Resumo:
In una 3-varietà chiusa è possibile individuare alcune superfici (dette di Heegaard) tali che, tagliando la 3-varietà lungo una di queste, essa si spezza in due corpi con manici che hanno per bordo tale superficie. La tesi propone alcuni recenti risultati circa l'interazione tra la topologia della 3-varietà, il gruppo di automorfismi delle sue superfici di Heegaard e complessi simpliciali costruiti a partire dalle curve su tali superfici.
Resumo:
L'argomento trattato in questa tesi riguarda lo studio geometrico delle curve piane. Una prima parte è dedicata alle varie definizioni di curva in matematica, la seconda tratta invece la presentazione delle curve da un punto di vista scolastico. Il mio lavoro è stato quello di analizzare alcuni testi delle scuole superiori allo scopo di evidenziare, laddove è stato possibile, il tipo di appproccio didattico utilizzato per presentare tali argomenti.
Resumo:
In this thesis some of the most important issues presently debated on international sustainability are analysed. The thesis is composed of five independent studies that tackle organically the following issues: the maritime transport externalities, the environmental Kuznets curve, the responsibilities in the carbon dioxide emissions and the integrated approach that have to be used to translate the principles of sustainability into policy. The analysis will be instrumental to demonstrating that sustainability, being a matter of economy, society and environment, requires to be analysed in a transdisciplinary perspective. Using an integrated approach to analyse the relationships between economy and environment, this thesis highlight that sustainability management requires joint economic instruments, integrated analysis, societal behavioural changes as well as responsibilities shifting.
Resumo:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.