946 resultados para cromatólise neuronal
Resumo:
Hippocampal neurons maintained in primary culture recycle synaptic vesicles and express functional glutamate receptors since early stages of neuronal development. By analyzing glutamate-induced cytosolic calcium changes to sense presynaptically released neurotransmitter, we demonstrate that the ability of neurons to release glutamate in the extracellular space is temporally coincident with the property of synaptic vesicles to undergo exocytotic-endocytotic recycling. Neuronal differentiation and maturation of synaptic contacts coincide with a change in the subtype of calcium channels primarily involved in controlling neurosecretion. Whereas omega-agatoxin IVA-sensitive channels play a role in controlling neurotransmitter secretion at all stages of neuronal differentiation, omega-conotoxin GVIA-sensitive channels are primarily involved in mediating glutamate release at early developmental stages only.
Resumo:
Guanine nucleotide-binding proteins (G proteins) activate K+ conductances in cardiac atrial cells to slow heart rate and in neurons to decrease excitability. cDNAs encoding three isoforms of a G-protein-coupled, inwardly rectifying K+ channel (GIRK) have recently been cloned from cardiac (GIRK1/Kir 3.1) and brain cDNA libraries (GIRK2/Kir 3.2 and GIRK3/Kir 3.3). Here we report that GIRK2 but not GIRK3 can be activated by G protein subunits G beta 1 and G gamma 2 in Xenopus oocytes. Furthermore, when either GIRK3 or GIRK2 was coexpressed with GIRK1 and activated either by muscarinic receptors or by G beta gamma subunits, G-protein-mediated inward currents were increased by 5- to 40-fold. The single-channel conductance for GIRK1 plus GIRK2 coexpression was intermediate between those for GIRK1 alone and for GIRK2 alone, and voltage-jump kinetics for the coexpressed channels displayed new kinetic properties. On the other hand, coexpression of GIRK3 with GIRK2 suppressed the GIRK2 alone response. These studies suggest that formation of heteromultimers involving the several GIRKs is an important mechanism for generating diversity in expression level and function of neurotransmitter-coupled, inward rectifier K+ channels.
Resumo:
The rhythmogenesis of 10-Hz sleep spindles is studied in a large-scale thalamic network model with two cell populations: the excitatory thalamocortical (TC) relay neurons and the inhibitory nucleus reticularis thalami (RE) neurons. Spindle-like bursting oscillations emerge naturally from reciprocal interactions between TC and RE neurons. We find that the network oscillations can be synchronized coherently, even though the RE-TC connections are random and sparse, and even though individual neurons fire rebound bursts intermittently in time. When the fast gamma-aminobutyrate type A synaptic inhibition is blocked, synchronous slow oscillations resembling absence seizures are observed. Near-maximal network synchrony is established with even modest convergence in the RE-to-TC projection (as few as 5-10 RE inputs per TC cell suffice). The hyperpolarization-activated cation current (Ih) is found to provide a cellular basis for the intermittency of rebound bursting that is commonly observed in TC neurons during spindles. Such synchronous oscillations with intermittency can be maintained only with a significant degree of convergence for the TC-to-RE projection.
Resumo:
Previous studies have implicated the bcl-2 protooncogene as a potential regulator of neuronal survival. However, mice lacking functional bcl-2 exhibited normal development and maintenance of the central nervous system (CNS). Since bcl-2 appears dispensable for neuronal survival, we have examined the expression and function of bcl-x, another member of the bcl-2 family of death regulatory genes. Bcl-2 is expressed in neuronal tissues during embryonic development but is down-regulated in the adult CNS. In contrast, Bcl-xL expression is retained in neurons of the adult CNS. Two different forms of bcl-x mRNA and their corresponding products, Bcl-xL and Bcl-x beta, were expressed in embryonic and adult neurons of the CNS. Microinjection of bcl-xL and bcl-x beta cDNAs into primary sympathetic neurons inhibited their death induced by nerve growth factor withdrawal. Thus, Bcl-x proteins appear to play an important role in the regulation of neuronal survival in the adult CNS.
Resumo:
Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.
Resumo:
The mechanisms responsible for cytokine-mediated antiviral effects are not fully understood. We approached this problem by studying the outcome of intraocular herpes simplex (HSV) infection in transgenic mice that express interferon gamma in the photoreceptor cells of the retina. These transgenic mice showed selective survival from lethal HSV-2 infection manifested in both eyes, the optic nerve, and the brain. Although transgenic mice developed greater inflammatory responses to the virus in the eyes, inflammation and viral titers in their brains were equivalent to nontransgenic mice. However, survival of transgenic mice correlated with markedly lower numbers of central neurons undergoing apoptosis. The protooncogene Bcl2 was found to be induced in the HSV-2-infected brains of transgenic mice, allowing us to speculate on its role in fostering neuronal survival in this model. These observations imply a complex interaction between cytokine, virus, and host cellular factors. Our results suggest a cytokine-regulated salvage pathway that allows for survival of infected neurons.
Resumo:
It has previously been shown that alcohol can suppress reproduction in humans, monkeys, and small rodents by inhibiting release of luteinizing hormone (LH). The principal action is via suppression of the release of LH-releasing hormone (LHRH) both in vivo and in vitro. The present experiments were designed to determine the mechanism by which alcohol inhibits LHRH release. Previous research has indicated that the release of LHRH is controlled by nitric oxide (NO). The proposed pathway is via norepinephrine-induced release of NO from NOergic neurons, which then activates LHRH release. In the present experiments, we further evaluated the details of this mechanism in male rats by incubating medial basal hypothalamic (MBH) explants in vitro and examining the release of NO, prostaglandin E2 (PGE2), conversion of arachidonic acid to prostanoids, and production of cGMP. The results have provided further support for our theory of LHRH control. Norepinephrine increased the release of NO as measured by conversion of [14C]arginine to [14C]citrulline, and this increase was blocked by the alpha 1 receptor blocker prazosin. Furthermore, the release of LHRH induced by nitroprusside (NP), a donor of NO, is related to the activation of soluble guanylate cyclase by NO since NP increased cGMP release from MBHs and cGMP also released LHRH. Ethanol had no effect on the production of NO by MBH explants or the increased release of NO induced by norepinephrine. Therefore, it does not act at that step in the pathway. Ethanol also failed to affect the increase in cGMP induced by NP. On the other hand, as might be expected from previous experiments indicating that LHRH release was brought about by PGE2, NP increased the conversion of [14C]arachidonic acid to its metabolites, particularly PGE2. Ethanol completely blocked the release of LHRH induced by NP and the increase in PGE2 induced by NP. Therefore, the results support the theory that norepinephrine acts to stimulate NO release from NOergic neurons. This NO diffuses to the LHRH terminals where it activates guanylate cyclase, leading to an increase in cGMP. At the same time, it also activates cyclooxygenase. The increase in cGMP increases intracellular free calcium, activating phospholipase A2 to provide arachidonic acid, the substrate for conversion by the activated cyclooxygenase to PGE2, which then activates the release of LHRH. Since alcohol inhibits the conversion of labeled arachidonic acid to PGE2, it must act either directly to inhibit cyclooxygenase or perhaps it may act by blocking the increase in intracellular free calcium induced by cGMP, which is crucial for activation of of both phospholipase A2 and cyclooxygenase.
Resumo:
Fragile X syndrome (FXS) is the most common form of inherited mental retardation in humans. FXS is caused by loss of the Fragile X Mental Retardation Protein (FMRP), an important regulator of neuronal mRNA translation. Patients with FXS display cognitive deficits including memory problems. Protein synthesis-dependent long-term changes in synaptic plasticity are involved in the establishment and maintenance of long-term memory. One prevalent theory of FXS pathology predicts that FMRP is required to negatively regulate the translation of important mRNAs at the synapse. We are investigating microRNAs (miRNAs) as a potential regulator of synaptic FMRP-regulated mRNAs that have previously been described as being crucial to the process of synaptic plasticity. The general hypothesis underlying this thesis is that FMRP may negatively regulate the expression of futsch (the Drosophila homologue of the microtubule-associated protein gene MAP1B) via the miRNA pathway. The first step we took in testing this hypothesis was to confirm that futsch is subject to miRNA-mediated translational control. Using in silico target analysis, we predicted that several neuronally expressed miRNAs target the futsch mRNA 3'UTR and repress expression of Futsch protein. Then, using an in vitro luciferase reporter system, we showed that miR-315 and members of the miR-9 family selectively down-regulated futsch reporter translation. We have confirmed by site- directed mutagenesis that the miRNA interaction with the futsch 3'UTR is specific to the miRNA seed region binding site. Interestingly, reduction of FMRP levels by RNAi had no effect on futsch 3'UTR reporter expression. Together, these data suggest regulation of futsch expression by the miRNA pathway might be independent of FMRP activity. However, additional experiments need to be completed to confirm these preliminary results.
Resumo:
Visual symptoms are relatively common in Parkinson's disease (PD) and optical coherence tomography has indicated possible retinal thinning. Accumulation of aggregated α-synuclein is thought to be a central pathogenic event in the PD brain but there have not as yet been reports of retinal synucleinopathy. Retinal wholemounts were prepared from subjects with a primary clinicopathological diagnosis of PD (N = 9), dementia with Lewy bodies (DLB; N = 3), Alzheimer's disease (N = 3), progressive supranuclear palsy (N = 2) as well as elderly normal control subjects (N = 4). These were immunohistochemically stained with an antibody against α-synuclein phosphorylated at serine 129, which is a specific molecular marker of synucleinopathy. Phosphorylated α-synuclein-immunoreactive (p-syn IR) nerve fibers were present in 7/9 PD subjects and in 1/3 DLB subjects; these were sparsely distributed and superficially located near or at the inner retinal surface. The fibers were either long and straight or branching, often with multiple en-passant varicosities along their length. The straight fibers most often had an orientation that was radial with respect to the optic disk. Together, these features are suggestive of either retinopetal/centrifugal fibers or of ganglion cell axons. In one PD subject there were sparse p-syn IR neuronal cell bodies with dendritic morphology suggestive of G19 retinal ganglion cells or intrinsically photosensitive ganglion cells. There were no stained nerve fibers or other specific staining in any of the non-PD or non-DLB subjects. It is possible that at least some of the observed visual function impairments in PD subjects might be due to α-synucleinopathy.
Resumo:
Tese de mestrado, Bioinformática e Biologia Computacional (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Tese de doutoramento, Farmácia (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Farmácia, 2016
Resumo:
UNLABELLED Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but thatbokwas not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found thatbok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injuryin vitroand seizure-induced neuronal injuryin vivo Deletion ofbokalso increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death inbax-deficient neurons. Single-cell imaging demonstrated thatbok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bokdeficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death inbok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injuryin vitroandin vivo SIGNIFICANCE STATEMENT Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok controls neuronal Ca(2+)homeostasis and bioenergetics and, contrary to previous assumptions, exerts neuroprotective activitiesin vitroandin vivo Our results demonstrate that Bok cannot be placed unambiguously into the Bax-like Bcl-2 subfamily of pro-apoptotic proteins.
Resumo:
The homeostasis of glutamate is critical to normal brain function; deficiencies in the regulation of extracellular glutamate are thought to be a major determinant of damage in hypoxic brains. Extracellular levels of glutamate are regulated mainly by plasmalemmal glutamate transporters. We have evaluated the distribution of the glutamate transporter GLAST and two splice variants of GLT-1 in the hypoxic neonatal pig brain using this as model of neonatal humans. In response to severe hypoxic insults, we observe a rapid loss of two glial glutamate transporters from specific brain regions, such as the CA1 region of the hippocampus, but not the dentate gyrus. The spatial distribution of loss accords with patterns of damage in these brains. Conversely, we demonstrate that hypoxia evokes the expression of a splice variant of GLT-1 in neurons. We suggest that this expression may be induced in response to elevated extracellular glutamate around these neurons, and that this splice variant may represent a useful marker for direct quantification of the extent of likely neuronal damage in hypoxic brains. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Cone snails have evolved a vast array of peptide toxins for prey capture and defence. These peptides are directed against a wide variety of pharmacological targets, making them an invaluable source of ligands for studying the properties of these targets in normal and diseased states. A number of these peptides have shown efficacy in vivo, including inhibitors of calcium channels, the norepinephrine transporter, nicotinic acetylcholine receptors, NMDA receptors and neurotensin receptors, with several having undergone pre-clinical or clinical development for the treatment of pain.