929 resultados para computational model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neodymium (Nd) isotopic composition (Nd) of seawater is a quasi-conservative tracer of water mass mixing and is assumed to hold great potential for paleoceanographic studies. Here we present a comprehensive approach for the simulation of the two neodymium isotopes 143Nd, and 144Nd using the Bern3D model, a low resolution ocean model. The high computational efficiency of the Bern3D model in conjunction with our comprehensive approach allows us to systematically and extensively explore the sensitivity of Nd concentrations and Nd to the parametrisation of sources and sinks. Previous studies have been restricted in doing so either by the chosen approach or by computational costs. Our study thus presents the most comprehensive survey of the marine Nd cycle to date. Our model simulates both Nd concentrations as well as Nd in good agreement with observations. Nd covaries with salinity, thus underlining its potential as a water mass proxy. Results confirm that the continental margins are required as a Nd source to simulate Nd concentrations and Nd consistent with observations. We estimate this source to be slightly smaller than reported in previous studies and find that above a certain magnitude its magnitude affects Nd only to a small extent. On the other hand, the parametrisation of the reversible scavenging considerably affects the ability of the model to simulate both, Nd concentrations and Nd. Furthermore, despite their small contribution, we find dust and rivers to be important components of the Nd cycle. In additional experiments, we systematically varied the diapycnal diffusivity as well as the Atlantic-to-Pacific freshwater flux to explore the sensitivity of Nd concentrations and its isotopic signature to the strength and geometry of the overturning circulation. These experiments reveal that Nd concentrations and Nd are comparatively little affected by variations in diapycnal diffusivity and the Atlantic-to-Pacific freshwater flux. In contrast, an adequate representation of Nd sources and sinks is crucial to simulate Nd concentrations and Nd consistent with observations. The good agreement of our results with observations paves the way for the evaluation of the paleoceanographic potential of Nd in further model studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. BASIC METHODS Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. PRINCIPAL FINDINGS Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03-5.46 Pa vs. eversion carotid endarterectomy: 0.12-5.22 Pa). CONCLUSIONS Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automated identification of vertebrae from X-ray image(s) is an important step for various medical image computing tasks such as 2D/3D rigid and non-rigid registration. In this chapter we present a graphical model-based solution for automated vertebra identification from X-ray image(s). Our solution does not ask for a training process using training data and has the capability to automatically determine the number of vertebrae visible in the image(s). This is achieved by combining a graphical model-based maximum a posterior probability (MAP) estimate with a mean-shift based clustering. Experiments conducted on simulated X-ray images as well as on a low-dose low quality X-ray spinal image of a scoliotic patient verified its performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon’s implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike’s preceding ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron’s ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of comets with the solar wind has been the focus of many studies including numerical modeling. We compare the results of our multifluid MHD simulation of comet 1P/Halley to data obtained during the flyby of the European Space Agency's Giotto spacecraft in 1986. The model solves the full set of MHD equations for the individual fluids representing the solar wind protons, the cometary light and heavy ions, and the electrons. The mass loading, charge-exchange, dissociative ion-electron recombination, and collisional interactions between the fluids are taken into account. The computational domain spans over several million kilometers, and the close vicinity of the comet is resolved to the details of the magnetic cavity. The model is validated by comparison to the corresponding Giotto observations obtained by the Ion Mass Spectrometer, the Neutral Mass Spectrometer, the Giotto magnetometer experiment, and the Johnstone Plasma Analyzer instrument. The model shows the formation of the bow shock, the ion pile-up, and the diamagnetic cavity and is able to reproduce the observed temperature differences between the pick-up ion populations and the solar wind protons. We give an overview of the global interaction of the comet with the solar wind and then show the effects of the Lorentz force interaction between the different plasma populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabecular bone is a porous mineralized tissue playing a major load bearing role in the human body. Prediction of age-related and disease-related fractures and the behavior of bone implant systems needs a thorough understanding of its structure-mechanical property relationships, which can be obtained using microcomputed tomography-based finite element modeling. In this study, a nonlinear model for trabecular bone as a cohesive-frictional material was implemented in a large-scale computational framework and validated by comparison of μFE simulations with experimental tests in uniaxial tension and compression. A good correspondence of stiffness and yield points between simulations and experiments was found for a wide range of bone volume fraction and degree of anisotropy in both tension and compression using a non-calibrated, average set of material parameters. These results demonstrate the ability of the model to capture the effects leading to failure of bone for three anatomical sites and several donors, which may be used to determine the apparent behavior of trabecular bone and its evolution with age, disease, and treatment in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Ductal carcinoma in situ (DCIS) is a noninvasive breast lesion with uncertain risk for invasive progression. Usual care (UC) for DCIS consists of treatment upon diagnosis, thus potentially overtreating patients with low propensity for progression. One strategy to reduce overtreatment is active surveillance (AS), whereby DCIS is treated only upon detection of invasive disease. Our goal was to perform a quantitative evaluation of outcomes following an AS strategy for DCIS. METHODS Age-stratified, 10-year disease-specific cumulative mortality (DSCM) for AS was calculated using a computational risk projection model based upon published estimates for natural history parameters, and Surveillance, Epidemiology, and End Results data for outcomes. AS projections were compared with the DSCM for patients who received UC. To quantify the propagation of parameter uncertainty, a 95% projection range (PR) was computed, and sensitivity analyses were performed. RESULTS Under the assumption that AS cannot outperform UC, the projected median differences in 10-year DSCM between AS and UC when diagnosed at ages 40, 55, and 70 years were 2.6% (PR = 1.4%-5.1%), 1.5% (PR = 0.5%-3.5%), and 0.6% (PR = 0.0%-2.4), respectively. Corresponding median numbers of patients needed to treat to avert one breast cancer death were 38.3 (PR = 19.7-69.9), 67.3 (PR = 28.7-211.4), and 157.2 (PR = 41.1-3872.8), respectively. Sensitivity analyses showed that the parameter with greatest impact on DSCM was the probability of understaging invasive cancer at diagnosis. CONCLUSION AS could be a viable management strategy for carefully selected DCIS patients, particularly among older age groups and those with substantial competing mortality risks. The effectiveness of AS could be markedly improved by reducing the rate of understaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study investigates the role of credit risk in a continuous time stochastic asset allocation model, since the traditional dynamic framework does not provide credit risk flexibility. The general model of the study extends the traditional dynamic efficiency framework by explicitly deriving the optimal value function for the infinite horizon stochastic control problem via a weighted volatility measure of market and credit risk. The model's optimal strategy was then compared to that obtained from a benchmark Markowitz-type dynamic optimization framework to determine which specification adequately reflects the optimal terminal investment returns and strategy under credit and market risks. The paper shows that an investor's optimal terminal return is lower than typically indicated under the traditional mean-variance framework during periods of elevated credit risk. Hence I conclude that, while the traditional dynamic mean-variance approach may indicate the ideal, in the presence of credit-risk it does not accurately reflect the observed optimal returns, terminal wealth and portfolio selection strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Geographical Simulation Model developed by IDE-JETRO (IDE-GSM) is a computer simulation model based on spatial economics. IDE-GSM enables us to predict the economic impacts of various trade and transport facilitation measures. Here, we mainly compare the prioritized projects of the Master Plan on ASEAN Connectivity (MPAC) and the Comprehensive Asia Development Plan (CADP). MPAC focus on specific hard or soft infrastructure projects that connect one ASEAN member state to another while the CADP emphasizes the importance of economic corridors or linkages between a large cluster and another cluster. As compared with MPAC projects, the simulation analysis shows that CADP projects have much larger positive impacts on ASEAN countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Received signal strength-based localization systems usually rely on a calibration process that aims at characterizing the propagation channel. However, due to the changing environmental dynamics, the behavior of the channel may change after some time, thus, recalibration processes are necessary to maintain the positioning accuracy. This paper proposes a dynamic calibration method to initially calibrate and subsequently update the parameters of the propagation channel model using a Least Mean Squares approach. The method assumes that each anchor node in the localization infrastructure is characterized by its own propagation channel model. In practice, a set of sniffers is used to collect RSS samples, which will be used to automatically calibrate each channel model by iteratively minimizing the positioning error. The proposed method is validated through numerical simulation, showing that the positioning error of the mobile nodes is effectively reduced. Furthermore, the method has a very low computational cost; therefore it can be used in real-time operation for wireless resource-constrained nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish an axiomatic model of multi-measures, capturing some classes of measures studied in the fuzzy sets literature, where they are applied to only one or two arguments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

sharedcircuitmodels is presented in this work. The sharedcircuitsmodelapproach of sociocognitivecapacities recently proposed by Hurley in The sharedcircuitsmodel (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences 31(1) (2008) 1–22 is enriched and improved in this work. A five-layer computational architecture for designing artificialcognitivecontrolsystems is proposed on the basis of a modified sharedcircuitsmodel for emulating sociocognitive experiences such as imitation, deliberation, and mindreading. In order to show the enormous potential of this approach, a simplified implementation is applied to a case study. An artificialcognitivecontrolsystem is applied for controlling force in a manufacturing process that demonstrates the suitability of the suggested approach

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).