985 resultados para component classification
Resumo:
Using one male-inherited and eight biparentally inherited microsatellite markers, we investigate the population genetic structure of the Valais chromosome race of the common shrew (Sorex araneus) in the Central Alps of Europe. Unexpectedly, the Y-chromosome microsatellite suggests nearly complete absence of male gene flow among populations from the St-Bernard and Simplon regions (Switzerland). Autosomal markers also show significant genetic structuring among these two geographical areas. Isolation by distance is significant and possible barriers to gene flow exist in the study area. Two different approaches are used to better understand the geographical patterns and the causes of this structuring. Using a principal component analysis for which testing procedure exists, and partial Mantel tests, we show that the St-Bernard pass does not represent a significant barrier to gene flow although it culminates at 2469 m, close to the highest altitudinal record for this species. Similar results are found for the Simplon pass, indicating that both passes represented potential postglacial recolonization routes into Switzerland from Italian refugia after the last Pleistocene glaciations. In contrast with the weak effect of these mountain passes, the Rhône valley lowlands significantly reduce gene flow in this species. Natural obstacles (the large Rhône river) and unsuitable habitats (dry slopes) are both present in the valley. Moreover, anthropogenic changes to landscape structures are likely to have strongly reduced available habitats for this shrew in the lowlands, thereby promoting genetic differentiation of populations found on opposite sides of the Rhône valley.
Resumo:
This paper presents 3-D brain tissue classificationschemes using three recent promising energy minimizationmethods for Markov random fields: graph cuts, loopybelief propagation and tree-reweighted message passing.The classification is performed using the well knownfinite Gaussian mixture Markov Random Field model.Results from the above methods are compared with widelyused iterative conditional modes algorithm. Theevaluation is performed on a dataset containing simulatedT1-weighted MR brain volumes with varying noise andintensity non-uniformities. The comparisons are performedin terms of energies as well as based on ground truthsegmentations, using various quantitative metrics.
Resumo:
Introduction: Quantitative measures of degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal or dural sac cross sectional area vary widely and do not correlate with clinical symptoms or results of surgical decompression. In an effort to improve quantification of stenosis we have developed a grading system based on the morphology of the dural sac and its contents as seen on T2 axial images. The grading comprises seven categories ranging form normal to the most severe stenosis and takes into account the ratio of rootlet/CSF content. Material and methods: Fifty T2 axial MRI images taken at disc level from twenty seven symptomatic lumbar spinal stenosis patients who underwent decompressive surgery were classified into seven categories by five observers and reclassified 2 weeks later by the same investigators. Intra- and inter-observer reliability of the classification were assessed using Cohen's and Fleiss' kappa statistics, respectively. Results: Generally, the morphology grading system itself was well adopted by the observers. Its success in application is strongly influenced by the identification of the dural sac. The average intraobserver Cohen's kappa was 0.53 ± 0.2. The inter-observer Fleiss' kappa was 0.38 ± 0.02 in the first rating and 0.3 ± 0.03 in the second rating repeated after two weeks. Discussion: In this attempt, the teaching of the observers was limited to an introduction to the general idea of the morphology grading system and one example MRI image per category. The identification of the dimension of the dural sac may be a difficult issue in absence of complete T1 T2 MRI image series as it was the case here. The similarity of the CSF to possibly present fat on T2 images was the main reason of mismatch in the assignment of the cases to a category. The Fleiss correlation factors of the five observers are fair and the proposed morphology grading system is promising.
Resumo:
In this paper we propose a Pyramidal Classification Algorithm,which together with an appropriate aggregation index producesan indexed pseudo-hierarchy (in the strict sense) withoutinversions nor crossings. The computer implementation of thealgorithm makes it possible to carry out some simulation testsby Monte Carlo methods in order to study the efficiency andsensitivity of the pyramidal methods of the Maximum, Minimumand UPGMA. The results shown in this paper may help to choosebetween the three classification methods proposed, in order toobtain the classification that best fits the original structureof the population, provided we have an a priori informationconcerning this structure.
Resumo:
Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.
Resumo:
To be diagnostically useful, structural MRI must reliably distinguish Alzheimer's disease (AD) from normal aging in individual scans. Recent advances in statistical learning theory have led to the application of support vector machines to MRI for detection of a variety of disease states. The aims of this study were to assess how successfully support vector machines assigned individual diagnoses and to determine whether data-sets combined from multiple scanners and different centres could be used to obtain effective classification of scans. We used linear support vector machines to classify the grey matter segment of T1-weighted MR scans from pathologically proven AD patients and cognitively normal elderly individuals obtained from two centres with different scanning equipment. Because the clinical diagnosis of mild AD is difficult we also tested the ability of support vector machines to differentiate control scans from patients without post-mortem confirmation. Finally we sought to use these methods to differentiate scans between patients suffering from AD from those with frontotemporal lobar degeneration. Up to 96% of pathologically verified AD patients were correctly classified using whole brain images. Data from different centres were successfully combined achieving comparable results from the separate analyses. Importantly, data from one centre could be used to train a support vector machine to accurately differentiate AD and normal ageing scans obtained from another centre with different subjects and different scanner equipment. Patients with mild, clinically probable AD and age/sex matched controls were correctly separated in 89% of cases which is compatible with published diagnosis rates in the best clinical centres. This method correctly assigned 89% of patients with post-mortem confirmed diagnosis of either AD or frontotemporal lobar degeneration to their respective group. Our study leads to three conclusions: Firstly, support vector machines successfully separate patients with AD from healthy aging subjects. Secondly, they perform well in the differential diagnosis of two different forms of dementia. Thirdly, the method is robust and can be generalized across different centres. This suggests an important role for computer based diagnostic image analysis for clinical practice.
Resumo:
HYPOTHESIS: Supraspinatus deficiency associated with total shoulder arthroplasty (TSA) provokes eccentric loading and may induce loosening of the glenoid component. A downward inclination of the glenoid component has been proposed to balance supraspinatus deficiency. METHODS: This hypothesis was assessed by a numeric musculoskeletal model of the glenohumeral joint during active abduction. Three cases were compared: TSA with normal muscular function, TSA with supraspinatus deficiency, and TSA with supraspinatus deficiency and downward inclination of the glenoid. RESULTS: Supraspinatus deficiency increased humeral migration and eccentric loading. A downward inclination of the glenoid partly balanced the loss of stability, but this potential advantage was counterbalanced by an important stress increase within the glenoid cement. The additional subchondral bone reaming required to incline the glenoid component indeed reduced the bone support, increasing cement deformation and stress. CONCLUSION: Glenoid inclination should not be obtained at the expense of subchondral bone support.
Resumo:
Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics) is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.
Resumo:
The classical binary classification problem is investigatedwhen it is known in advance that the posterior probability function(or regression function) belongs to some class of functions. We introduceand analyze a method which effectively exploits this knowledge. The methodis based on minimizing the empirical risk over a carefully selected``skeleton'' of the class of regression functions. The skeleton is acovering of the class based on a data--dependent metric, especiallyfitted for classification. A new scale--sensitive dimension isintroduced which is more useful for the studied classification problemthan other, previously defined, dimension measures. This fact isdemonstrated by performance bounds for the skeleton estimate in termsof the new dimension.
Resumo:
The principal objective of the knot theory is to provide a simple way of classifying and ordering all the knot types. Here, we propose a natural classification of knots based on their intrinsic position in the knot space that is defined by the set of knots to which a given knot can be converted by individual intersegmental passages. In addition, we characterize various knots using a set of simple quantum numbers that can be determined upon inspection of minimal crossing diagram of a knot. These numbers include: crossing number; average three-dimensional writhe; number of topological domains; and the average relaxation value
Resumo:
Comprend : Introduction à l'étude des diatomées ; Exposé de la classification des diatomées
Resumo:
Comprend : Introduction à l'étude des diatomées ; Exposé de la classification des diatomées