997 resultados para catalytic membrane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mu m were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 +/- 47 and 201 +/- 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 +/- 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 +/- 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 +/- 0.88 and 3.16 +/- 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mu m-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mu m-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) pressure sensor packaged by using a hard core in the membrane is presented. By utilizing the unique membrane-based FBG packagine method, its pressure sensitivity has been effectively enhanced. The pressure sensitivity of the FBG reaches 5.75 X 10(-3)/MPa within the pressure range of 0.0.16 Mpa. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51 1279-1281, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24335

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Si resonant-cavity-enhanced (RCE) photodiode was fabricated on a silicon membrane. The Si membrane was formed by etching from the back side of the silicon-on-insulator substrate with the buried SiO2 layer as etch-stop layer. A gold layer was deposited serving as an electrode layer and bottom mirror of the RCE photodiode. The photodiode had an external quantum efficiency of 33.8% at the resonant wavelength of 848 nm and a full width at half maximum (FWHM) of 17 nm. The responsivity was 4.6 times that of a conventional Si p-i-n photodiode with the same absorption layer thickness. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure for purifying single-walled carbon nanotubes (SWNTs) synthesized by the catalytic decomposition of hydrocarbons has been developed. Based on the results from SEM observations, EDS analysis and Raman measurements, it was found that amorphous carbon, catalyst particles, vapor-grown carbon nanofibers and multi-walled carbon nanotubes were removed from the ropes of SWNTs without damaging the SWNT bundles, and a 40% yield of the SWNTs with a purity of about 95% was achieved after purification. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si-based membrane RCE photodetectors were introduced. The RCE photodiodes were fabricated on silicon membranes formed from SOI substrate. Compared with the conventional p-i-n photodiode, the responsivity has a threefold enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2/4A zeolite composite catalysts were prepared by coating TiO2 on 4A zeolite via liquid phase deposition. The TiO 2/4A zeolite composite catalysts wtih higher surface weak acidity and lower mediate strong acidity exhibit much better catalytic performance on ethanol dehydration to ethylene compared with 4A zeolite. It is suggested that the TiO2 promoter could improve the effective Lewis acidity of composite catalyst which consequently enhanced the catalytic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MoNi/gamma-Al2O3 catalysts were prepared by the impregnation method. The catalyst samples were characterized by XRD and TPR. The effects of Mo promoter content and the catalyst reducing temperature Oil hydrotreatment activity of the catalyst were studied under 200 degrees C and 3 MPa hydrogen pressure using acetic acid as the model compound. The XRD results indicate that the addition of Mo promoter is beneficial to the uniformity of nickel species on the catalyst and decreases the Interaction between nickel species and the support Which results in the decrease the of NiAl2O4 spinel formation. The addition of Mo promoter also decreases the reducing temperature of the catalyst. After the catalyst of 0.06 MoNi/gamma-Al2O3 being reduced Under the atmosphere of H-2/N-2(5/95, V/V), nickel oxide was reduced to Ni-0. The reaction was promoted obviously upon the addition of the MoNi/gamma-Al2O3 catalyst reduced at 600 degrees C. The Mo-modified Ni/gamma-Al2O3 catalyst reduced at 600 degrees C displayed the highest activity during the reaction, the conversion of acetic acid reached the highest point of 33.2%. The products included ethyl acetate and water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient flow patterns and bubble slug lengths were investigated with oxygen gas (O-2) bubbles produced by catalytic chemical reactions using a high speed camera bonded with a microscope. The microreactor consists of an inlet liquid plenum, nine parallel rectangular microchannels followed by a micronozzle, using the MEMS fabrication technique. The etched surface was deposited by the thin platinum film, which is acted as the catalyst. Experiments were performed with the inlet mass concentration of the hydrogen peroxide from 50% to 90% and the pressure drop across the silicon chip from 2.5 to 20.0 kPa. The silicon chip is directly exposed in the environment thus the heat released via the catalytic chemical reactions is dissipated into the environment and the experiment was performed at the room temperature level. It is found that the two-phase flow with the catalytic chemical reactions display the cyclic behavior. A full cycle consists of a short fresh liquid refilling stage, a liquid decomposition stage followed by the bubble slug flow stage. At the beginning of the bubble slug flow stage, the liquid slug number reaches maximum, while at the end of the bubble slug flow stage the liquid slugs are quickly flushed out of the microchannels. Two or three large bubbles are observed in the inlet liquid plenum, affecting the two-phase distributions in microchannels. The bubble slug lengths, cycle periods as well as the mass flow rates are analyzed with different mass concentrations of hydrogen peroxide and pressure drops. The bubble slug length is helpful for the selection of the future microreactor length ensuring the complete hydrogen peroxide decomposition. Future studies on the temperature effect on the transient two-phase flow with chemical reactions are recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A promising application for biomass is liquid fuel synthesis, such as methanol or dimethyl ether (DME). Previous studies have studied syngas production from biomass-derived char, oil and gas. This study intends to explore the technology of syngas production from direct biomass gasification, which may be more economically viable. The ratio of H-2/CO is an important factor that affects the performance of this process. In this study, the characteristics of biomass gasification gas, such as H-2/CO and tar yield, as well as its potential for liquid fuel synthesis is explored. A fluidized bed gasifier and a downstream fixed bed are employed as the reactors. Two kinds of catalysts: dolomite and nickel based catalyst are applied, and they are used in the fluidized bed and fixed bed, respectively. The gasifying agent used is an air-steam mixture. The main variables studied are temperature and weight hourly space velocity in the fixed bed reactor. Over the ranges of operating conditions examined, the maximum H-2 content reaches 52.47 vol%, while the ratio of H-2/CO varies between 1.87 and 4.45. The results indicate that an appropriate temperature (750 degrees C for the current study) and more catalyst are favorable for getting a higher H-2/CO ratio. Using a simple first order kinetic model for the overall tar removal reaction, the apparent activation energies and pre-exponential factors are obtained for nickel based catalysts. The results indicate that biomass gasification gas has great potential for liquid fuel synthesis after further processing.