934 resultados para capacitive cooling
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This study concerns the properties of the concentrated bittern solutions occurring as by-product from solar salt works, in relation to their potential use as liquid desiccants in cooling systems. Solutions of compositions similar to those of bitterns have been made up in the laboratory, as have concentrated mixtures of MgCl2–MgSO4–H2O. Measurements of vapour pressure have been carried out using an isoteniscope and are reported together with measurements of density and viscosity. Several theoretical models representing these properties are reviewed and compared against the experimental results; the average agreement between theory and experiment is within 5% for vapour pressure and better for the preferred models of the other two properties. Based on these findings, an expression is provided for the equilibrium relative humidity of bitterns as a function of concentration relative to raw seawater. The vapour pressures of bittern solutions are found to be similar to those of solutions containing only magnesium chloride but having the same mass fraction of total salts. Therefore magnesium chloride solution is a reasonable model for bitterns for the purpose of developing the proposed cooling system.
Resumo:
We have directly measured properties of concentrated seawater brines produced through solar evaporation in salt works. They are sufficiently hygroscopic for use in desiccant cooling cycles which can cool air to 8.0–10.9 °C below ambient. This compares to only 3.8–8.7 °C with simple evaporative cooling. Desiccant cooling can extend the growing seasons of greenhouse crops thus providing an adaptive measure against climate change.
Resumo:
Experiments and theoretical modelling have been carried out to predict the performance of a solar-powered liquid desiccant cooling system for greenhouses. We have tested two components of the system in the laboratory using MgCl2 desiccant: (i) a regenerator which was tested under a solar simulator and (ii) a desiccator which was installed in a test duct. Theoretical models have been developed for both regenerator and desiccator and gave good agreement with the experiments. The verified computer model is used to predict the performance of the whole system during the hot summer months in Mumbai, Chittagong, Muscat, Messina and Havana. Taking examples of temperate, sub-tropical, tropical and heat-tolerant tropical crops (lettuce, soya bean, tomato and cucumber respectively) we estimate the extensions in growing seasons enabled by the system. Compared to conventional evaporative cooling, the desiccant system lowers average daily maximum temperatures in the hot season by 5.5-7.5 °C, sufficient to maintain viable growing conditions for lettuce throughout the year. In the case of tomato, cucumber and soya bean the system enables optimal cultivation through most summer months. It is concluded that the concept is technically viable and deserves testing by means of a pilot installation at an appropriate location.
Resumo:
Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.
Resumo:
Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.
Resumo:
The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.
Resumo:
Evaporative pads are frequently used for the cooling of greenhouses. However, a drawback of this method is the consumption of freshwater. In this paper it is shown, both theoretically and through a practical example, that effective evaporative cooling can be achieved using seawater in place of fresh water. The advantages and drawbacks of using seawater are discussed more generally. In climates that are both hot and humid, evaporative systems cannot always provide sufficient cooling, with the result that cultivation often has to be halted during the hottest months of the year. To overcome this, we propose a concept in which a desiccant pad is used to dehumidify the air before it enters the evaporative pad. The desiccant pad is supplied with a hygroscopic liquid that is regenerated by the energy of the sun. The performance of this concept has been modelled and the properties of various liquids have been compared. An attractive option is to obtain the liquid from seawater itself, given that seawater contains hygroscopic salts such as magnesium chloride. Preliminary experiments are reported in which magnesium chloride solution has been regenerated beneath a solar simulator.
Resumo:
Background: Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods: To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results: Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion: Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem. © 2013 Bifulco et al.; licensee BioMed Central Ltd.
Resumo:
Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired.
Resumo:
Agriculture accounts for ~70% of freshwater usage worldwide. Seawater desalination alone cannot meet the growing needs for irrigation and food production, particularly in hot, desert environments. Greenhouse cultivation of high-value crops uses just a fraction of freshwater per unit of food produced when compared with open field cultivation. However, desert greenhouse producers face three main challenges: freshwater supply, plant nutrient supply, and cooling of the greenhouse. The common practice of evaporative cooling for greenhouses consumes large amounts of fresh water. In Saudi Arabia, the most common greenhouse cooling schemes are fresh water-based evaporative cooling, often using fossil groundwater or energy-intensive desalinated water, and traditional refrigeration-based direct expansion cooling, largely powered by the burning of fossil fuels. The coastal deserts have ambient conditions that are seasonally too humid to support adequate evaporative cooling, necessitating additional energy consumption in the dehumidification process of refrigeration-based cooling. This project evaluates the use of a combined-system liquid desiccant dehumidifier and membrane distillation unit that can meet the dual needs of cooling and freshwater supply for a greenhouse in a hot and humid environment.
Resumo:
Aerospace turboengines present a demanding challenge to many heat transfer scientists and engineers. Designers in this field are seeking the best design to transform the chemical energy of the fuel into the useful work of propulsive thrust at maximum efficiency. To this aim, aerospace turboengines must operate at very high temperatures and pressures with very little heat losses. These requirements are often in conflict with the ability to protect the turboengine blades from this hostile thermal environment. Heat pipe technology provides a potential cooling means for the structure exposed to high heat fluxes. Therefore, the objective of this dissertation is to develop a new radially rotating miniature heat pipe, which would combine the traditional air-cooling technology with the heat pipe for more effective turboengine blade cooling. ^ In this dissertation, radially rotating miniature heat pipes are analyzed and studied by employing appropriate flow and heat transfer modeling as well as experimental tests. The analytical solutions for the flows of condensate film and vapor, film thickness, and vapor temperature distribution along the heat pipe length are derived. The diffuse effects of non-condensable gases on the temperature distribution along the heat pipe length are also studied, and the analytical solutions for the temperature distributions with the diffuse effects of non-condensable gases are obtained. Extensive experimental tests on radially rotating miniature heat pipes with different influential parameters are undertaken, and various effects of these parameters on the operation of the heat pipe performance are researched. These analytical solutions are in good agreement with the experimental data. ^ The theoretical and experimental studies have proven that the radially rotating miniature heat pipe has a very large heat transfer capability and a very high effective thermal conductance that is 60–100 times higher than the thermal conductivity of copper. At the same time, the heat pipe has a simple structure and low manufacturing cost, and can withstand strong vibrations and work in a high-temperature environment. Therefore, the combination of the traditional air-cooling technology with the radially rotating miniature heat pipe is a feasible and effective cooling means for high-temperature turbine blades. ^