948 resultados para Time-dependent mechanical systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstinence from chronic administration of various drugs of abuse such as ethanol, opiates, and psychostimulants results in withdrawal syndromes largely unique to each drug class. However, one symptom that appears common to these withdrawal syndromes in humans is a negative affective/motivational state. Prior work in rodents has shown that elevations in intracranial self-stimulation (ICSS) reward thresholds provide a quantitative index that serves as a model for the negative affective state during withdrawal from psychostimulants and opiates. The current study sought to determine whether ICSS threshold elevations also accompany abstinence from chronic ethanol exposure sufficient to induce physical dependence. Rats prepared with stimulating electrodes in the lateral hypothalamus were trained in a discrete-trial current-intensity ICSS threshold procedure; subsequently they were subjected to chronic ethanol administration in ethanol vapor chambers (average blood alcohol level of 197 mg/dl). A time-dependent elevation in ICSS thresholds was observed following removal from the ethanol, but not the control, chambers. Thresholds were significantly elevated for 48 hr after cessation of ethanol exposure, with peak elevations observed at 6-8 hr. Blood alcohol levels were directly correlated with the magnitude of peak threshold elevation. Ratings of traditional overt signs of withdrawal showed a similar time course of expression and resolution. The results suggest that decreased function of reward systems (elevations in reward thresholds) is a common element of withdrawal from chronic administration of several diverse classes of abused drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta o controle de posição e orientação de um modelo não linear de Plataforma de Stewart com seis graus de liberdade construído no ambiente de sistemas multicorpos ADAMS® desenvolvido pela Mechanical Dynamics, Inc. O modelo não linear é exportado para o ambiente SIMULINK® desenvolvido pela MathWorks, Inc., onde o controle de posição e orientação é realizado a partir da linearização do modelo e a aplicação de um sistema seguidor com realimentação de estados. Utililiza-se, também o SIMULINK® para implementar a dinâmica de um sistema servoválvula e cilindro hidráulico com um servocontrole de pressão e assim simular o comportamento dinâmico de um simulador de vôo com acionamento hidráulico. A utilização destes pacotes comerciais visa obter uma economia de tempo e esforço na modelagem de sistemas mecânicos complexos e na programação para obtenção da resposta do sistema no tempo, além de facilitar a análise de várias configurações de Plataformas de Stewart

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planktonic foraminiferal faunas of the southeast Pacific indicate that sea surface temperatures (SST) have varied by as much as 8-10°C in the Peru Current, and by ?5-7°C along the equator, over the past 150,000 years. Changes in SST at times such as the Last Glacial Maximum reflect incursion of high-latitude species Globorotalia inflata and Neogloboquadrina pachyderma into the eastern boundary current and as far north as the equator. A simple heat budget model of the equatorial Pacific shows that observed changes in Peru Current advection can account for about half of the total variability in equatorial SSTs. The remaining changes in equatorial SST, which are likely related to local changes in upwelling or pycnocline depth, precede changes in polar climates as recorded by d18O. This partitioning of processes in eastern equatorial Pacific SST reveals that net ice-age cooling here reflects first a rapid response of equatorial upwelling to insolation, followed by a later response to changes in the eastern boundary current associated with high-latitude climate (which closely resembles variations in atmospheric CO2 as recorded in the Vostok ice core). Although precise mechanisms responsible for the equatorial upwelling component of climate change remain uncertain, one likely candidate that may operate independently of the ice sheets is insolation-driven changes in El Niño/Southern Oscillation (ENSO) frequency. Early responses of equatorial SST detected both here and elsewhere highlight the sensitivity of tropical systems to small changes in seasonal insolation. The scale of tropical changes we have observed are substantially greater than model predictions, suggesting a need for further quantitative assessment of processes associated with long-term climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Supported in part by Atomic Energy Commission Contract AT(11-1)-1469."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On cover: COO-1469-0046.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"February 1, 1966."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Supported in part by the Atomic Energy Commission under Contract no. US AEC AT(11-1) 1018."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"July 5, 1965"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Item 247.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"February 22, 1977."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence of single molecules coupled to a thermal bath is studied both experimentally and theoretically. The effect of different fluctuations on the coherence properties of resonance fluorescence is considered first. Coherence is measured in an interference experiment where a single molecule is used as a light source. A standard approach based on the optical Bloch equations apparently provides quite an accurate description of the interference experiment. Systems with long correlation times (where spectra are time dependent on any timescale) are considered next. It is shown that intensity-time-frequency correlation spectroscopy, which provides both high signal-to-noise ratio and high time resolution, is very suitable for such a case. The Bloch equations are further tested in an experiment where the shape of an excitation spectral line of a single molecule is accurately measured over six orders of magnitude of the exciting laser power. Significant deviations from the predictions of the Bloch equations are found. The role of critical parameters-the correlation time of the bath, the Rabi oscillation period, and the coupling constant between the bath and the molecule-is discussed. The paper also includes a short general introduction to the methodology of single-molecule studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulation is one of the fundamental operations in particulate processing and has a very ancient history and widespread use. Much fundamental particle science has occurred in the last two decades to help understand the underlying phenomena. Yet, until recently the development of granulation systems was mostly based on popular practice. The use of process systems approaches to the integrated understanding of these operations is providing improved insight into the complex nature of the processes. Improved mathematical representations, new solution techniques and the application of the models to industrial processes are yielding better designs, improved optimisation and tighter control of these systems. The parallel development of advanced instrumentation and the use of inferential approaches provide real-time access to system parameters necessary for improvements in operation. The use of advanced models to help develop real-time plant diagnostic systems provides further evidence of the utility of process system approaches to granulation processes. This paper highlights some of those aspects of granulation. (c) 2005 Elsevier Ltd. All rights reserved.