937 resultados para Threshold crypto-graphic schemes and algorithms
Resumo:
The thesis presents new methodology and algorithms that can be used to analyse and measure the hand tremor and fatigue of surgeons while performing surgery. This will assist them in deriving useful information about their fatigue levels, and make them aware of the changes in their tool point accuracies. This thesis proposes that muscular changes of surgeons, which occur through a day of operating, can be monitored using Electromyography (EMG) signals. The multi-channel EMG signals are measured at different muscles in the upper arm of surgeons. The dependence of EMG signals has been examined to test the hypothesis that EMG signals are coupled with and dependent on each other. The results demonstrated that EMG signals collected from different channels while mimicking an operating posture are independent. Consequently, single channel fatigue analysis has been performed. In measuring hand tremor, a new method for determining the maximum tremor amplitude using Principal Component Analysis (PCA) and a new technique to detrend acceleration signals using Empirical Mode Decomposition algorithm were introduced. This tremor determination method is more representative for surgeons and it is suggested as an alternative fatigue measure. This was combined with the complexity analysis method, and applied to surgically captured data to determine if operating has an effect on a surgeon’s fatigue and tremor levels. It was found that surgical tremor and fatigue are developed throughout a day of operating and that this could be determined based solely on their initial values. Finally, several Nonlinear AutoRegressive with eXogenous inputs (NARX) neural networks were evaluated. The results suggest that it is possible to monitor surgeon tremor variations during surgery from their EMG fatigue measurements.
Resumo:
Predicting future need for water resources has traditionally been, at best, a crude mixture of art and science. This has prevented the evaluation of water need from being carried out in either a consistent or comprehensive manner. This inconsistent and somewhat arbitrary approach to water resources planning led to well publicised premature developments in the 1970's and 1980's but privatisation of the Water Industry, including creation of the Office of Water Services and the National Rivers Authority in 1989, turned the tide of resource planning to the point where funding of schemes and their justification by the Regulators could no longer be assumed. Furthermore, considerable areas of uncertainty were beginning to enter the debate and complicate the assessment It was also no longer appropriate to consider that contingencies would continue to lie solely on the demand side of the equation. An inability to calculate the balance between supply and demand may mean an inability to meet standards of service or, arguably worse, an excessive provision of water resources and excessive costs to customers. United Kingdom Water Industry Research limited (UKWlR) Headroom project in 1998 provided a simple methodology for the calculation of planning margins. This methodology, although well received, was not, however, accepted by the Regulators as a tool sufficient to promote resource development. This thesis begins by considering the history of water resource planning in the UK, moving on to discuss events following privatisation of the water industry post·1985. The mid section of the research forms the bulk of original work and provides a scoping exercise which reveals a catalogue of uncertainties prevalent within the supply-demand balance. Each of these uncertainties is considered in terms of materiality, scope, and whether it can be quantified within a risk analysis package. Many of the areas of uncertainty identified would merit further research. A workable, yet robust, methodology for evaluating the balance between water resources and water demands by using a spreadsheet based risk analysis package is presented. The technique involves statistical sampling and simulation such that samples are taken from input distributions on both the supply and demand side of the equation and the imbalance between supply and demand is calculated in the form of an output distribution. The percentiles of the output distribution represent different standards of service to the customer. The model allows dependencies between distributions to be considered, for improved uncertainties to be assessed and for the impact of uncertain solutions to any imbalance to be calculated directly. The method is considered a Significant leap forward in the field of water resource planning.
Resumo:
A number of professional sectors have recently moved away from their longstanding career model of up-or-out promotion and embraced innovative alternatives. Professional labor is a critical resource in professional service firms. Therefore, changes to these internal labor markets are likely to trigger other innovations, for example in knowledge management, incentive schemes and team composition. In this chapter we look at how new career models affect the core organizing model of professional firms and, in turn, their capacity for and processes of innovation. We consider how professional firms link the development of human capital and the division of professional labor to distinctive demands for innovation and how novel career systems help them respond to these demands.
Resumo:
Linear programming (LP) is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although conventional LP models require precise data, managers and decision makers dealing with real-world optimization problems often do not have access to exact values. Fuzzy sets have been used in the fuzzy LP (FLP) problems to deal with the imprecise data in the decision variables, objective function and/or the constraints. The imprecisions in the FLP problems could be related to (1) the decision variables; (2) the coefficients of the decision variables in the objective function; (3) the coefficients of the decision variables in the constraints; (4) the right-hand-side of the constraints; or (5) all of these parameters. In this paper, we develop a new stepwise FLP model where fuzzy numbers are considered for the coefficients of the decision variables in the objective function, the coefficients of the decision variables in the constraints and the right-hand-side of the constraints. In the first step, we use the possibility and necessity relations for fuzzy constraints without considering the fuzzy objective function. In the subsequent step, we extend our method to the fuzzy objective function. We use two numerical examples from the FLP literature for comparison purposes and to demonstrate the applicability of the proposed method and the computational efficiency of the procedures and algorithms. © 2013-IOS Press and the authors. All rights reserved.
Resumo:
Although crisp data are fundamentally indispensable for determining the profit Malmquist productivity index (MPI), the observed values in real-world problems are often imprecise or vague. These imprecise or vague data can be suitably characterized with fuzzy and interval methods. In this paper, we reformulate the conventional profit MPI problem as an imprecise data envelopment analysis (DEA) problem, and propose two novel methods for measuring the overall profit MPI when the inputs, outputs, and price vectors are fuzzy or vary in intervals. We develop a fuzzy version of the conventional MPI model by using a ranking method, and solve the model with a commercial off-the-shelf DEA software package. In addition, we define an interval for the overall profit MPI of each decision-making unit (DMU) and divide the DMUs into six groups according to the intervals obtained for their overall profit efficiency and MPIs. We also present two numerical examples to demonstrate the applicability of the two proposed models and exhibit the efficacy of the procedures and algorithms. © 2011 Elsevier Ltd.
Resumo:
Health care organizations must continuously improve their productivity to sustain long-term growth and profitability. Sustainable productivity performance is mostly assumed to be a natural outcome of successful health care management. Data envelopment analysis (DEA) is a popular mathematical programming method for comparing the inputs and outputs of a set of homogenous decision making units (DMUs) by evaluating their relative efficiency. The Malmquist productivity index (MPI) is widely used for productivity analysis by relying on constructing a best practice frontier and calculating the relative performance of a DMU for different time periods. The conventional DEA requires accurate and crisp data to calculate the MPI. However, the real-world data are often imprecise and vague. In this study, the authors propose a novel productivity measurement approach in fuzzy environments with MPI. An application of the proposed approach in health care is presented to demonstrate the simplicity and efficacy of the procedures and algorithms in a hospital efficiency study conducted for a State Office of Inspector General in the United States. © 2012, IGI Global.
Resumo:
Mathematics Subject Classification: 26A33, 93C83, 93C85, 68T40
Resumo:
Тодор П. Чолаков, Димитър Й. Биров - Тази статия представя цялостен модел за автоматизиран реинженеринг на наследени системи. Тя описва в детайли процесите на превод на софтуера и на рефакторинг и степента, до която могат да се автоматизират тези процеси. По отношение на превода на код се представя модел за автоматизирано превеждане на код, съдържащ указатели и работа с адресна аритметика. Също така се дефинира рамка за процеса на реинженеринг и се набелязват възможности за по-нататъшно развитие на концепции, инструменти и алгоритми.
Resumo:
Five axis machine tools are increasing and becoming more popular as customers demand more complex machined parts. In high value manufacturing, the importance of machine tools in producing high accuracy products is essential. High accuracy manufacturing requires producing parts in a repeatable manner and precision in compliance to the defined design specifications. The performance of the machine tools is often affected by geometrical errors due to a variety of causes including incorrect tool offsets, errors in the centres of rotation and thermal growth. As a consequence, it can be difficult to produce highly accurate parts consistently. It is, therefore, essential to ensure that machine tools are verified in terms of their geometric and positioning accuracy. When machine tools are verified in terms of their accuracy, the resulting numerical values of positional accuracy and process capability can be used to define design for verification rules and algorithms so that machined parts can be easily produced without scrap and little or no after process measurement. In this paper the benefits of machine tool verification are listed and a case study is used to demonstrate the implementation of robust machine tool performance measurement and diagnostics using a ballbar system.
Resumo:
Measurement assisted assembly (MAA) has the potential to facilitate a step change in assembly efficiency for large structures such as airframes through the reduction of rework, manually intensive processes and expensive monolithic assembly tooling. It is shown how MAA can enable rapid part-to-part assembly, increased use of flexible automation, traceable quality assurance and control, reduced structure weight and improved aerodynamic tolerances. These advances will require the development of automated networks of measurement instruments; model based thermal compensation, the automatic integration of 'live' measurement data into variation simulation and algorithms to generate cutting paths for predictive shimming and drilling processes. This paper sets out an architecture for digital systems which will enable this integrated approach to variation management. © 2013 The Authors.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
“Availability” is the terminology used in asset intensive industries such as petrochemical and hydrocarbons processing to describe the readiness of equipment, systems or plants to perform their designed functions. It is a measure to suggest a facility’s capability of meeting targeted production in a safe working environment. Availability is also vital as it encompasses reliability and maintainability, allowing engineers to manage and operate facilities by focusing on one performance indicator. These benefits make availability a very demanding and highly desired area of interest and research for both industry and academia. In this dissertation, new models, approaches and algorithms have been explored to estimate and manage the availability of complex hydrocarbon processing systems. The risk of equipment failure and its effect on availability is vital in the hydrocarbon industry, and is also explored in this research. The importance of availability encouraged companies to invest in this domain by putting efforts and resources to develop novel techniques for system availability enhancement. Most of the work in this area is focused on individual equipment compared to facility or system level availability assessment and management. This research is focused on developing an new systematic methods to estimate system availability. The main focus areas in this research are to address availability estimation and management through physical asset management, risk-based availability estimation strategies, availability and safety using a failure assessment framework, and availability enhancement using early equipment fault detection and maintenance scheduling optimization.
Resumo:
This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.
The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.
Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.
Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.
The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.
Resumo:
In recent years, most low and middle-income countries, have adopted different approaches to universal health coverage (UHC), to ensure equity and financial risk protection in accessing essential healthcare services. UHC-related policies and delivery strategies are largely based on existing healthcare systems, a result of gradual development (based on local factors and priorities). Most countries have emphasized on health financing, and human resources for health (HRH) reform policies, based on good practices of several healthcare plans to deliver UHC for their population.
Health financing and labor market frameworks were used, to understand health financing, HRH dynamics, and to analyze key health policies implemented over the past decade in Kenya’s effort to achieve UHC. Through the understanding, policy options are proposed to Kenya; analyzing, and generating lessons from health financing, and HRH reforms experiences in China. Data was collected using mixed methods approach, utilizing both quantitative (documents and literature review), and qualitative (in-depth interviews) data collection techniques.
The problems in Kenya are substantial: high levels of out-of-pocket health expenditure, slow progress in expanding health insurance among informal sector workers, inefficiencies in pulling of health are revenues, inadequate deployed HRH, maldistribution of HRH, and inadequate quality measures in training health worker. The government has identified the critical role of strengthening primary health care and the National Hospital Insurance Fund (NHIF) in Kenya’s move towards UHC. Strengthening primary health care requires; re-defining the role of hospitals, and health insurance schemes, and training, deploying and retaining primary care professionals according to the health needs of the population; concepts not emphasized in Kenya’s healthcare reforms or programs design. Kenya’s top leadership commitment is urgently needed for tougher reforms implementation, and important lessons from China’s extensive health reforms in the past decade are beneficial. Key lessons from China include health insurance expansion through rigorous research, monitoring, and evaluation, substantially increasing government health expenditure, innovative primary healthcare strengthening, designing, and implementing health policy reforms that are responsive to the population, and regional approaches to strengthening HRH.