1000 resultados para Thermal poling
Resumo:
Stoichiometric CrSi2 was prepared by arc melting and compacted by uniaxial hot pressing for property measurements. The crystal structure of CrSi2 was investigated using the powder x-ray diffraction method. From the Rietveld refinement, the lattice parameters were found to be a = 4.427 57 (7) and c = 6.368 04 (11) Å, respectively. The thermal expansion measurement revealed an anisotropic expansion in the temperature range from room temperature 800 K with αa = 14.58×10−6/K, αc = 7.51×10−6/K, and αV = 12.05×10−6/K. The volumetric thermal expansion coefficient shows an anomalous decrease in the temperature range of 450–600 K. The measured electrical resistivity ρ and thermoelectric power S have similar trends with a maxima around 550 K. Thermal conductivity measurements show a monotonic decrease with increasing temperature from a room temperature value of 10 W m−1 K−1. The ZT values increase with temperature and have a maximum value of 0.18 in the temperature range studied. An analysis of the electronic band structure is provided.
Resumo:
Transparent glasses in the system 3BaO–3TiO2–B2O3 (BTBO) were fabricated via the conventional melt-quenching technique. The as-quenched samples were confirmed to be non-crystalline by differential thermal analysis (DTA). Thermal parameters were evaluated using non-isothermal DTA experiments. The Kauzmann temperature was found to be 759 K based on heating-rate-dependent glass transition and crystallization temperatures. A theoretical relation for the temperature-dependent viscosity is proposed for these glasses and glass-ceramics.
Resumo:
In this article, we describe our ongoing efforts in addressing the environment and energy challenges facing the world today. Tapping solar thermal energy seems to be the right choice for a country like India. We look at three solar-thermal technologies in the laboratory — water purification/distillation, Stirling engine, and air-conditioning/refrigeration.
Resumo:
Nanocrystalline materials exhibit very high strengths compared to conventional materials, but their thermal stability may be poor. Electrodeposition is one of the promising methods for obtaining dense nanomaterials. It is shown that use of two different baths and appropriate conditions enables the production of nano-Ni with properties similar to commercially available materials. Microindentation experiments revealed a four fold increase in hardness value for nano-Ni compared to conventional coarse grained Ni. An improved thermal stability of nano-Ni was observed on co-deposition of nano-Al2O3particles.
Resumo:
Bulk Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses, are found to exhibit memory type electrical switching. The switching voltages (V(t)) and thermal stability of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses are found to decrease with Sn content. The composition dependence of v, has been understood on the basis of the decrease in the OFF state resistance and thermal stability of these glasses with tin addition. X-ray diffraction studies reveal that no elemental Sn or Sn compounds with Te or Ge are present in thermally crystallized Ge-Te-Sn samples. This indicates that Sn atoms do not interact with the host matrix and form a phase separated network of its own, which remains in the parent glass matrix as an inclusion. Consequently, there is no enhancement of network connectivity and rigidity. The thickness dependence of switching voltages of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses is found to be linear, in agreement with the memory switching behavior shown by these glasses. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper reports single pulse shock tube and ab initio studies on thermal decomposition of 2-fluoro and 2-chloroethanol at T=1000–1200 K. Both molecules have HX (X = F/Cl) and H2O molecular elimination channels. The CH3CHO formed by HX elimination is chemically active and undergoes secondary decomposition resulting in the formation of CH4, C2H6, and C2H4. A detailed kinetic simulation indicates that the formation of C2H4 could not be quantitatively explained as arising exclusively from secondary CH3CHO decomposition. Contributions from primary radical processes need to be considered to explain C2H4 quantitatively. Ab initio calculations on HX and H2O elimination reactions from the haloethanols at HF, MP2, and DFT levels with various basis sets up to 6/311++G**are reported. It is pointed out that due to strong correlations between A and Eα, comparison of these two parameters between experimental and theoretical results could be misleading.
Resumo:
This lecture describes some recent attempts at unravelling the mechanics of the temperature distribution near ground, especially during calm, clear nights. In particular, a resolution is offered of the so-called Ramdas paradox, connected with observations of a temperature minimum some decimetres above bare soil on calm clear nights, in apparent defiance of the Rayleigh criterion for instability due to thermal convection. The dynamics of the associated temperature distribution is governed by radiative and convective transport and by thermal conduction, and is characterised by two time constants, involving respectively quick radiative adjustments and slow diffusive relaxation. The theory underlying the work described here suggests that surface parameters like ground emissivity and soil thermal conductivity can exert appreciable influence on the development of nocturnal inversions.
Resumo:
We report electrical property of a polycrystalline NdLiMo2O8 ceramics using complex impedance analysis. The material shows temperature dependent electrical relaxation phenomena. The d.c. conductivity shows typical Arrhenius behavior, when observed as a function of temperature. The a.c. conductivity is found to obey Jonscher's universal power law. The material was prepared in powder form by a standard solid-state reaction technique. Material formation and crystallinity have been confirmed by X-ray diffraction studies. Impedance measurements have been performed over a range of temperatures and frequencies. The results have been analyzed in the complex plane formalism and suitable equivalent circuits have been proposed in different regions. The role of bulk and grain boundary effect in the overall electrical conduction process is discussed with proper justification. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Application of non-thermal plasma for gas cleaning is gaining prominence in the recent years. Normally, the gas treatment was carried out at or above room temperature, by the dry type plasma reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the flue gas mixture. We propose the non-thermal plasma process at very low temperature, and report here some interesting results of treatment of NO or N2O with pulsed plasma below — 100°C ambient temperature. Direct methanol synthesis from CH4 and CO2 at very low temperature is also reported. A comparative analysis of the various tests are presented together with a note on the energy consideration
Resumo:
A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.
Resumo:
Application of non-thermal plasma for gas cleaning is gaining prominence in the recent years. Normally, the gas treatment was carried out at or above room temperature, by the dry type plasma reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the flue gas mixture. We propose the non-thermal plasma process at very low temperature, and report here some interesting results of treatment of NO or N2O with pulsed plasma below — 100°C ambient temperature. Direct methanol synthesis from CH4 and CO2 at very low temperature is also reported. A comparative analysis of the various tests are presented together with a note on the energy consideration