853 resultados para Technical directions
Resumo:
Cet article porte sur les perceptions des directions d’écoles de milieu défavorisé à propos de leur travail. Nous nous intéressons à la situation qui prévaut à Montréal, où les écoles bénéficient de mesures particulières de soutien du Ministère de l’Éducation, du Loisir et du Sport. Nous présentons les résultats d’une recherche menée auprès de quarante-cinq directions d'écoles primaires de milieu défavorisé de Montréal. L’objectif principal était d’identifier, de décrire et de documenter les caractéristiques du travail d’une direction d’école de milieu défavorisé. Quelques constats émergent des données recueillies. Les directions considèrent leur tâche différente de celle des directions d’une école de milieu moyen ou favorisé. Ces différences portent principalement sur la lourdeur de la tâche, sur les compétences et les attitudes particulières requises, sur la nécessité d’exercer un leadership de justice sociale, sur la nécessité de développer une certaine vision de l’éducation et finalement sur l’importance du développement professionnel.
Resumo:
Le concept de justice sociale ressort clairement comme étant primordial dans l’exercice du leadership des directions d’écoles, et ce, particulièrement en milieu défavorisé. Cet article examine d’abord le contexte du programme de recherche dans lequel s’inscrit l’étude dont il présente des données. Il rappelle ensuite la littérature sur le concept de justice sociale en éducation et présente les données d’une étude menée auprès de quarante-cinq directions d’écoles primaires de milieux défavorisés de l’île de Montréal. Amenées à parler de leur travail de direction, celles-ci ont clairement exprimé qu’elles trouvent nécessaire d’exercer un tel leadership, entre autres pour contrer les préjugés des intervenants de l’école à l’égard des familles et des élèves, et d’utiliser divers moyens pour le faire. L’article décrit enfin comment les directions disent exercer ce leadership.
Resumo:
La littérature scientifique sur la direction d'écoles de milieux défavorisés est peu abondante. Cependant, elle identifie des caractéristiques observées de façon récurrente dans les écoles performantes de milieux défavorisés. Dans le cadre d'un programme de recherche plus vaste visant à comprendre le travail de direction d'école de milieu défavorisé, nous avons utilisé ces caractéristiques afin de connaître les réactions de 45 directions d'écoles primaires de l'île de Montréal à leur égard. Bien que connaissant ces caractéristiques, plusieurs directions ont manifesté leurs réticences à l'effet que, dans les écoles performantes, l'apprentissage constitue la priorité. Nous présentons ici cette recherche effectuée en collaboration avec le Programme de soutien à l'école montréalaise (MELS) et nous discutons les résultats, qui nous surprennent.
Resumo:
Data mining is one of the hottest research areas nowadays as it has got wide variety of applications in common man’s life to make the world a better place to live. It is all about finding interesting hidden patterns in a huge history data base. As an example, from a sales data base, one can find an interesting pattern like “people who buy magazines tend to buy news papers also” using data mining. Now in the sales point of view the advantage is that one can place these things together in the shop to increase sales. In this research work, data mining is effectively applied to a domain called placement chance prediction, since taking wise career decision is so crucial for anybody for sure. In India technical manpower analysis is carried out by an organization named National Technical Manpower Information System (NTMIS), established in 1983-84 by India's Ministry of Education & Culture. The NTMIS comprises of a lead centre in the IAMR, New Delhi, and 21 nodal centres located at different parts of the country. The Kerala State Nodal Centre is located at Cochin University of Science and Technology. In Nodal Centre, they collect placement information by sending postal questionnaire to passed out students on a regular basis. From this raw data available in the nodal centre, a history data base was prepared. Each record in this data base includes entrance rank ranges, reservation, Sector, Sex, and a particular engineering. From each such combination of attributes from the history data base of student records, corresponding placement chances is computed and stored in the history data base. From this data, various popular data mining models are built and tested. These models can be used to predict the most suitable branch for a particular new student with one of the above combination of criteria. Also a detailed performance comparison of the various data mining models is done.This research work proposes to use a combination of data mining models namely a hybrid stacking ensemble for better predictions. A strategy to predict the overall absorption rate for various branches as well as the time it takes for all the students of a particular branch to get placed etc are also proposed. Finally, this research work puts forward a new data mining algorithm namely C 4.5 * stat for numeric data sets which has been proved to have competent accuracy over standard benchmarking data sets called UCI data sets. It also proposes an optimization strategy called parameter tuning to improve the standard C 4.5 algorithm. As a summary this research work passes through all four dimensions for a typical data mining research work, namely application to a domain, development of classifier models, optimization and ensemble methods.
Resumo:
In spite of the far longed practices of technical analysis by many participants in Indian stock market, none have arrived at the exact position of technical analysis as a tool for foretelling share prices. There is no evidence supporting that one has established its definite role in predicting the behaviour of share price and also to see the extent of validity (how far reliable) of technical tools in Indian stock market. The problem is the vacuum in the arena of securities market analysis where an unrecognised tool is practised, i.e., whether to hold on to technical analysis or to drop it. Again, as already stated in this chapter, its validity need not continue forever. It may become futile as happened in developed markets. Continuous practice of a tool, which is valid only during discontinuous times is also an error. The efficacy of different market phenomena in terms of their ability to foretell the extent and direction of the price movements and reliability thereof remain as not yet proved in. This requires further study in this area so that this controversy may be settled. A solution to the problem requires enquiring and establishing the applicability of technical analysis, if any, there is in the Indian stock market. The study has the following two broad objectives for the purpose of confirming the applicability, if any, of technical analysis in the Indian stock market. The first objective is to ascertain the current validity of ‘traditional holding with respect to patterns’ and the second objective is to ascertain the ‘consistent superiority’, if any, of technical indicators over non-signal strategies in return generation. The study analyses the five patterns, which are widely known and commonly found in publications. They are: (1) Symmetrical Triangles, (2) Rising Wedges, (3) Falling Wedges, (4) Head and Shoulders Top and (5) Head and Shoulders Bottom.
Resumo:
Cyber Physical systems (CPS) connect the physical world with cyber world. The events happening in the real world is enormous and most of it go unnoticed and information is lost. CPS enables to embed tiny smart devices to capture the data and send it to Internet for further processing. The entire set-up call for lots of challenges and open new research problems. This talk is a journey through the landscape of research problems in this emerging area.
Resumo:
One comes across directions as the observations in a number of situations. The first inferential question that one should answer when dealing with such data is, “Are they isotropic or uniformly distributed?” The answer to this question goes back in history which we shall retrace a bit and provide an exact and approximate solution to this so-called “Pearson’s Random Walk” problem.
Resumo:
The The The The growing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demand for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of the the the the publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system of education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goods emphasized emphasized emphasized emphasized emphasized emphasized emphasized emphasized emphasized emphasized on large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation of funds on of funds on of funds on of funds on of funds on of funds on of funds on of funds on of funds on of funds on of funds for promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting education. Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to the rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of India, Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect primarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the earlierarlierarlierarlierarlierarlier political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social compulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions of the state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The presumption of sumption of sumption of sumption of sumption of sumption of sumption of sumption of sumption of sumption of sumption of assured assured assured assured assured assured assured assured and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed employment in employment in employment in employment in employment in employment in employment in employment in employment in employment in employment in employment in the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other countries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased further the scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher education in KeralaKeralaKeralaKeralaKeralaKerala, particularparticularparticularparticularparticularparticularparticularparticularparticularparticularly the technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe
Resumo:
The present study examines the level of pure technical and scale efficiencies of cassava production system including its sub-processes (that is production and processing stages) of 278 cassava farmers/processors from three regions of Delta State, Nigeria by applying Two-Stage Data Envelopment Analysis (DEA) approach. Results reveal that pure technical efficiency (PTE) is significantly lower at the production stage 0.41 vs 0.55 for the processing stage, but scale efficiency (SE) is high at both stages (0.84 and 0.87), implying that productivity can be improved substantially by reallocation of resources and adjusting operation size. The socio-economic determinants exert differential impacts on PTE and SE at each stage. Overall, education, experience and main occupation as farmer significantly improve SE while subsistence pressure reduces it. Extension contact significantly improves SE at the processing stage but reduces PTE and SE overall. Inverse size-PTE and size-SE relationships exist in cassava production system. In other words, large/medium farms are technically and scale inefficient. Gender gap exists in performance. Male farmers are technically efficient at processing stage but scale inefficient overall. Farmers in northern region are technically efficient. Investments in education, extension services and infrastructure are suggested as policy options to improve the cassava sector in Nigeria.
Resumo:
This paper estimates a translog stochastic production function to examine the determinants of technical efficiency of freshwater prawn farming in Bangladesh. Primary data has been collected using random sampling from 90 farmers of three villages in southwestern Bangladesh. Prawn farming displayed much variability in technical efficiency ranging from 9.50 to 99.94% with mean technical efficiency of 65%, which suggested a substantial 35% of potential output can be recovered by removing inefficiency. For a land scarce country like Bangladesh this gain could help increase income and ensure better livelihood for the farmers. Based on the translog production function specification, farmers could be made scale efficient by providing more input to produce more output. The results suggest that farmers’ education and non-farm income significantly improve efficiency whilst farmers’ training, farm distance from the water canal and involvement in fish farm associations reduces efficiency. Hence, the study proposes strategies such as less involvement in farming-related associations and raising the effective training facilities of the farmers as beneficial adjustments for reducing inefficiency. Moreover, the key policy implication of the analysis is that investment in primary education would greatly improve technical efficiency.
Resumo:
The summary from Goodson’s group on their recent work on heat transfer issues in the microelectronics and data storage industries illustrate the critical role of heat transfer for some areas of information technology. In this article, we build on their work and discuss some directions worthy of further research.
Resumo:
In January 1983 a group of US government, industry and university information specialists gathered at MIT to take stock of efforts to monitor, acquire, assess, and disseminate Japanese scientific and technical information (JSTI). It was agreed that these efforts were uncoordinated and poorly conceived, and that a clearer understanding of Japanese technical information systems and a clearer sense of its importance to end users was necessary. That meeting led to formal technology assessments, Congressinal hearings, and legislation; it also helped stimulate several private initiatives in JSTI provision. Four years later there exist better coordinated and better conceived JSTI programs in both the public and private sectors, but there remains much room for improvement. This paper will recount their development and assess future directions.