962 resultados para TUMOR LYMPHANGIOGENESIS
Resumo:
B lymphocytes are among the first cells to be infected by mouse mammary tumor virus (MMTV), and they play a crucial role in its life cycle. To study transcriptional regulation of MMTV in B cells, we have analyzed two areas of the long terminal repeat (LTR) next to the glucocorticoid receptor binding site, fp1 (at position -139 to -146 from the cap site) and fp2 (at -157 to -164). Both showed B-cell-specific protection in DNase I in vitro footprinting assays and contain binding sites for Ets transcription factors, a large family of proteins involved in cell proliferation and differentiation and oncogenic transformation. In gel retardation assays, fp1 and fp2 bound the heterodimeric Ets factor GA-binding protein (GABP) present in B-cell nuclear extracts, which was identified by various criteria: formation of dimers and tetramers, sensitivity to pro-oxidant conditions, inhibition of binding by specific antisera, and comigration of complexes with those formed by recombinant GABP. Mutations which prevented complex formation in vitro abolished glucocorticoid-stimulated transcription from an MMTV LTR linked to a reporter gene in transiently transfected B-cell lines, whereas they did not affect the basal level. Exogenously expressed GABP resulted in an increased level of hormone response of the LTR reporter plasmid and produced a synergistic effect with the coexpressed glucocorticoid receptor, indicating cooperation between the two. This is the first example of GABP cooperation with a steroid receptor, providing the opportunity for studying the integration of their intracellular signaling pathways.
Resumo:
Background And Objectives: Isolated limb perfusion with TNF-alpha and melphalan (TM-ILP) is a limb salvage therapy for non-resectable soft tissue sarcomas (STS) of the extremities. It is indicated for patients for whom amputation or debilitating surgery is the only alternative. It can be used either as an exclusive therapy (in palliation) or as a neo-adjuvant treatment, followed by marginal resection of tumor remnants with minimal functional impairment. Methods: Between February 1992 and March 2006, 57 TM-ILPs were performed on 51 patients with 88% high grade and 84% advanced stage tumors. Results: Mean follow-up is 38.9 months (4-159, median 22 months). Twenty-one percent patients had significant early complications, with 3 major re-operations, and 23% suffered long-lasting complications. Complete response was observed in 25%, partial response in 42%, stable disease in 14% and progressive disease in 14%. Resection of the tumor remnants was possible in 65%. A complementary treatment was necessary in 31%, mostly radiation therapy. A local recurrence was observed in 35%, after a mean of 20.3 months (2-78), and distant relapse was seen in 45%, after a mean of 13.4 months (5-196). Mean Disease-free survival was 14.9 months, and overall 5-year-survival 43.5%. Amputation rate at 5 years was 24%. Conclusions: TM-ILP is a conservative treatment with a high complications rate, but it can be successful even for the most severe STS of extremities. As a consequence the limb can be spared from amputation or debilitating surgery on the long term in about 75% of patients
Resumo:
The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.
Resumo:
ATP, released by both neurons and glia, is an important mediator of brain intercellular communication. We find that selective activation of purinergic P2Y1 receptors (P2Y1R) in cultured astrocytes triggers glutamate release. By total internal fluorescence reflection imaging of fluorescence-labeled glutamatergic vesicles, we document that such release occurs by regulated exocytosis. The stimulus-secretion coupling mechanism involves Ca2+ release from internal stores and is controlled by additional transductive events mediated by tumor necrosis factor-alpha (TNFalpha) and prostaglandins (PG). P2Y1R activation induces release of both TNFalpha and PGE2 and blocking either one significantly reduces glutamate release. Accordingly, astrocytes from TNFalpha-deficient (TNF(-/-)) or TNF type 1 receptor-deficient (TNFR1(-/-)) mice display altered P2Y1R-dependent Ca2+ signaling and deficient glutamate release. In mixed hippocampal cultures, the P2Y1R-evoked process occurs in astrocytes but not in neurons or microglia. P2Y1R stimulation induces Ca2+ -dependent glutamate release also from acute hippocampal slices. The process in situ displays characteristics resembling those in cultured astrocytes and is distinctly different from synaptic glutamate release evoked by high K+ stimulation as follows: (a) it is sensitive to cyclooxygenase inhibitors; (b) it is deficient in preparations from TNF(-/-) and TNFR1(-/-) mice; and (c) it is inhibited by the exocytosis blocker bafilomycin A1 with a different time course. No glutamate release is evoked by P2Y1R-dependent stimulation of hippocampal synaptosomes. Taken together, our data identify the coupling of purinergic P2Y1R to glutamate exocytosis and its peculiar TNFalpha- and PG-dependent control, and we strongly suggest that this cascade operates selectively in astrocytes. The identified pathway may play physiological roles in glial-glial and glial-neuronal communication.
Resumo:
PURPOSE: To describe the clinical presentation of cutaneous benign mixed tumor of the eyelid and its management options. METHODS: Periocular cases of cutaneous benign mixed tumor were gathered from members of an oculoplastics specialty Internet discussion group. A total of 9 patients are described in this retrospective, interventional case series. The clinical presentation, histopathology, and management of these lesions is reviewed. RESULTS: Patients were typically asymptomatic, presenting with a slowly enlarging, nontender nodule of 2 to 8 years' duration. The lesions ranged from 4 mm to 17 mm in greatest dimension. Four of the lesions were on the eyelid margin, three in the sub-brow area of the upper eyelid, and two in the central lids. All six cases not involving the brow were fixed to the tarsus; one brow lesion was believed to be adherent to the skin. None of the lesions was associated with significant changes of the overlying epidermis, although one lesion showed overlying pigmentation. All patients underwent excisional biopsy for diagnostic or cosmetic reasons. On histopathologic examination, the tumors were biphasic, with an epithelial component exhibiting apocrine or hair follicle differentiation and a myxoid, adipocytic, chondroid, and/or fibrous stroma. The pathologic diagnoses were all consistent with cutaneous benign mixed tumor (chondroid syringoma, pleomorphic adenoma). Follow-up ranged from 2 weeks to 12 months, although several patients failed to keep scheduled follow-up appointments. No clinical recurrences were identified. CONCLUSIONS: Cutaneous benign mixed tumor may occur in the eyelid, and, although uncommon, should be included in the differential diagnosis of firm, nodular eyelid tumors. The histopathologic features are similar to those seen in this tumor type arising in other areas of the body. Preoperative consideration of this diagnostic possibility may allow the surgeon to plan for complete excision, thereby reducing the possibility of recurrence or malignant transformation.
In vivo effects of a recombinant vaccinia virus expressing a mouse mammary tumor virus superantigen.
Resumo:
Early after infection, the mouse mammary tumor virus (MMTV) expresses a superantigen (SAg) at the surface of B lymphocytes. Interaction with the T-cell receptor Vbeta domain induces a polyclonal proliferative response of the SAg-reactive T cells. Stimulated T cells become anergic and are deleted from the T-cell repertoire. We have used a recombinant vaccinia virus encoding the MMTV(GR) SAg to dissect the effects of the retroviral SAg during an unrelated viral infection. Subcutaneous infection with this recombinant vaccinia virus induces a very rapid increase of Vbeta14 T cells in the draining lymph node. This stimulation does not require a large Plumber of infectious particles and is not strictly dependent on the expression of the major histocompatibility complex class II I-E molecule, as it is required after MMTV(GR) infection. In contrast to MMTV infection during which B cells are infected, we do not observe any clonal deletion of the reactive T cells following the initial stimulation phase. Our data show that contrary to the case with MMTV, macrophages but not B cells are the targets of infection by vaccinia virus in the lymph node, indicating the ability of these cells to present a retroviral SAg. The altered SAg expression in a different target cell observed during recombinant vaccinia virus infection therefore results in significant changes in the SAg response.
Resumo:
The notion that tumor angiogenesis may have therapeutic implications in the control of tumor growth was introduced by Dr. Judah Folkman in 1971. The approval of Avastin in 2004 as the first antiangiogenic systemic drug to treat cancer patients came as a validation of this visionary concept and opened new perspectives to the treatment of cancer. In addition, this success boosted the field to the quest for new therapeutic targets and antiangiogenic drugs. Preclinical and clinical evidence indicate that vascular integrins may be valid therapeutic targets. In preclinical studies, pharmacological inhibition of integrin function efficiently suppressed angiogenesis and inhibited tumor progression. alphaVbeta3 and alphaVbeta5 were the first vascular integrins targeted to suppress tumor angiogenesis. Subsequent experiments revealed that at least four additional integrins (i.e., alpha1beta1, alpha2beta1, alpha5beta1, and alpha6beta4) might be potential therapeutic targets. In clinical studies low-molecular-weight integrin inhibitors and anti-integrin function-blocking antibodies demonstrated low toxicity and good tolerability and are now being tested in combination with radiotherapy and chemotherapy for anticancer activity in patients. In this article the authors review the role of integrins in angiogenesis, present recent development in the use of alphaVbeta3 and alpha5beta1 integrin antagonists as potential therapeutics in cancer, and discuss future perspectives.
Resumo:
Transfer of tumor antigen-specific T-cell receptors (TCRs) into human T cells aims at redirecting their cytotoxicity toward tumors. Efficacy and safety may be affected by pairing of natural and introduced TCRalpha/beta chains potentially leading to autoimmunity. We hypothesized that a novel single-chain (sc)TCR framework relying on the coexpression of the TCRalpha constant alpha (Calpha) domain would prevent undesired pairing while preserving structural and functional similarity to a fully assembled double-chain (dc)TCR/CD3 complex. We confirmed this hypothesis for a murine p53-specific scTCR. Substantial effector function was observed only in the presence of a murine Calpha domain preceded by a TCRalpha signal peptide for shuttling to the cell membrane. The generalization to a human gp100-specific TCR required the murinization of both C domains. Structural and functional T-cell avidities of an accessory disulfide-linked scTCR gp100/Calpha were higher than those of a dcTCR. Antigen-dependent phosphorylation of the proximal effector zeta-chain-associated protein kinase 70 at tyrosine 319 was not impaired, reflecting its molecular integrity in signaling. In melanoma-engrafted nonobese diabetic/severe combined immunodeficient mice, adoptive transfer of scTCR gp100/Calpha transduced T cells conferred superior delay in tumor growth among primary and long-term secondary tumor challenges. We conclude that the novel scTCR constitutes a reliable means to immunotherapeutically target hematologic malignancies.
Resumo:
BACKGROUND: p53 point mutations represent potential tumor-specific cytolytic T lymphocyte (CTL) epitopes. Whether ionizing radiation (IR) alters the immunological properties of cells expressing mutant p53 in respect of the CTL epitope generated by a defined point mutation has not been evaluated. METHODS: Mutant p53-expressing syngeneic, nontumor forming BALB/c 3T3 fibroblasts, tumor forming ras-transfected BALB/c 3T3 sarcomas, and DBA/2-derived P815 mastocytoma cells, which differ at the level of minor histocompatibility antigens, were used as cellular vaccines. Cells were either injected with or without prior IR into naive BALB/c mice. Cellular cytotoxicity was assessed after secondary restimulation of effector spleen cells in vitro. RESULTS: Injection of P815 mastocytoma cells expressing the mutant p53 induced mutation-specific CTL in BALB/c mice irrespective of prior irradiation. However, syngeneic fibroblasts or fibrosarcomas endogenously expressing mutant p53 were able to induce significant mutation-specific CTL only when irradiated prior to injection into BALB/c mice. IR of fibroblasts did not detectably alter the expression of cell surface molecules involved in immune response induction, nor did it alter the short-term in vitro viability of the fibroblasts. Interestingly, radioactively-labeled fibroblasts injected into mice after irradiation showed altered organ distribution, suggesting that the in vivo fate of these cells may play a crucial role in their immunogenicity. CONCLUSIONS: These findings indicate that IR can alter the immunogenicity of syngeneic normal as well as tumor forming fibroblasts in vivo, and support the view that ionizing radiation enhances immunogenicity of cellular tumor vaccines.
Resumo:
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Resumo:
The abnormal vascular system of brain cancers inappropriately expresses membrane proteins, including proteolytic enzymes, ultimately resulting in blood extravasation. The production of inflammatory mediators, such as cytokines and nitric oxide, and tumor hypoxia have been implicated in these effects. We have previously shown that the activity of aminopeptidase A is increased in the abnormal vascular system of human and rat brain tumors. To study the mechanisms regulating the activities of peptidases in cerebral vasculature in brain tumors, we have developed a three-dimensional model of differentiated rat brain cells in aggregate cultures in which rat brain microvessels were incorporated. The secretion of interleukin-6 (IL-6) in the culture medium of aggregates was used as an indicator of inflammatory activation. Addition to these aggregates of C6 glioma cell medium (C6-CM) conditioned under hypoxic or normoxic conditions or serum mimicked tumor-dependent hypoxia or conditions of dysfunction of brain tumor vasculature. Hypoxic and normoxic C6-CM, but not serum, regulated peptidase activity in aggregates, and in particular it increased the activity of aminopeptidase A determined using histoenzymography. Serum, but not C6-CM, increased IL-6 production, but did not increase aminopeptidase A activity in aggregates. Thus soluble glioma-derived factors, but not serum-derived factors, induce dysfunctions of cerebral vasculature by directly regulating the activity of peptidases, not involving inflammatory activation. Tumor hypoxia is not necessary to modulate peptidase activity.
Resumo:
We have amplified a (CA)n:(GT)n microsatellite from the TNF promoters of a panel of mouse strains using the polymerase chain reaction. The length of the microsatellites was polymorphic, with eight alleles observed among 15 inbred strains bearing seven distinct H-2 haplotypes, and four outbred strains. In B10 congenic strains, the TNF allele detected by microsatellite polymorphism segregated with the MHC, and in recombinant haplotypes (NOD, NZW), it segregated with H-2D. The TNF allele found in the NZW strain (H-2z) was distinct from those of all other haplotypes, consistent with the hypothesis that this strain may carry a genetic defect in TNF production.