922 resultados para Switch Fees


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When asymptotic series methods are applied in order to solve problems that arise in applied mathematics in the limit that some parameter becomes small, they are unable to demonstrate behaviour that occurs on a scale that is exponentially small compared to the algebraic terms of the asymptotic series. There are many examples of physical systems where behaviour on this scale has important effects and, as such, a range of techniques known as exponential asymptotic techniques were developed that may be used to examinine behaviour on this exponentially small scale. Many problems in applied mathematics may be represented by behaviour within the complex plane, which may subsequently be examined using asymptotic methods. These problems frequently demonstrate behaviour known as Stokes phenomenon, which involves the rapid switches of behaviour on an exponentially small scale in the neighbourhood of some curve known as a Stokes line. Exponential asymptotic techniques have been applied in order to obtain an expression for this exponentially small switching behaviour in the solutions to orginary and partial differential equations. The problem of potential flow over a submerged obstacle has been previously considered in this manner by Chapman & Vanden-Broeck (2006). By representing the problem in the complex plane and applying an exponential asymptotic technique, they were able to detect the switching, and subsequent behaviour, of exponentially small waves on the free surface of the flow in the limit of small Froude number, specifically considering the case of flow over a step with one Stokes line present in the complex plane. We consider an extension of this work to flow configurations with multiple Stokes lines, such as flow over an inclined step, or flow over a bump or trench. The resultant expressions are analysed, and demonstrate interesting implications, such as the presence of exponentially sub-subdominant intermediate waves and the possibility of trapped surface waves for flow over a bump or trench. We then consider the effect of multiple Stokes lines in higher order equations, particu- larly investigating the behaviour of higher-order Stokes lines in the solutions to partial differential equations. These higher-order Stokes lines switch off the ordinary Stokes lines themselves, adding a layer of complexity to the overall Stokes structure of the solution. Specifically, we consider the different approaches taken by Howls et al. (2004) and Chap- man & Mortimer (2005) in applying exponential asymptotic techniques to determine the higher-order Stokes phenomenon behaviour in the solution to a particular partial differ- ential equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we introduce the Reaction Wheel Pendulum, a novel mechanical system consisting of a physical pendulum with a rotating bob. This system has several attractive features both from a pedagogical standpoint and from a research standpoint. From a pedagogical standpoint, the dynamics are the simplest among the various pendulum experiments available so that the system can be introduced to students earlier in their education. At the same time, the system is nonlinear and underactuated so that it can be used as a benchmark experiment to study recent advanced methodologies in nonlinear control, such as feedback linearization, passivity methods, backstepping and hybrid control. In this paper we discuss two control approaches for the problems of swingup and balance, namely, feedback linearization and passivity based control. We first show that the system is locally feedback linearizable by a local diffeomorphism in state space and nonlinear feedback. We compare the feedback linearization control with a linear pole-placement control for the problem of balancing the pendulum about the inverted position. For the swingup problem we discuss an energy approach based on collocated partial feedback linearization, and passivity of the resulting zero dynamics. A hybrid/switching control strategy is used to switch between the swingup and the balance control. Experimental results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a flying-capacitor-based chopper circuit for dc capacitor voltage equalization in diode-clamped multilevel inverters. Its important features are reduced voltage stress across the chopper switches, possible reduction in the chopper switching frequency, improved reliability, and ride-through capability enhancement. This topology is analyzed using three- and four-level flying-capacitor-based chopper circuit configurations. These configurations are different in capacitor and semiconductor device count and correspondingly reduce the device voltage stresses by half and one-third, respectively. The detailed working principles and control schemes for these circuits are presented. It is shown that, by preferentially selecting the available chopper switch states, the dc-link capacitor voltages can be efficiently equalized in addition to having tightly regulated flying-capacitor voltages around their references. The various operating modes of the chopper are described along with their preferential selection logic to achieve the desired performances. The performance of the proposed chopper and corresponding control schemes are confirmed through both simulation and experimental investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Illegal street racing has received increased attention in recent years from the media, governments and road safety professionals. At the same time, there has been a shift from treating illegal street racing as a public nuisance issue to a road safety problem in Australia, as this behaviour now attracts a penalty of increased periods of vehicle impoundment leading to permanent vehicle forfeiture for repeat offences. This severe vehicle sanction is typically applied to repeat drink driving offenders and drivers who breach suspensions and disqualifications in North American jurisdictions, but was first introduced in Australia to deal with illegal street racing and associated risky driving behaviours, grouped together under the label of ‘hooning’ in Australian jurisdictions. This paper describes how Australian jurisdictions are dealing with this issue. The research described in this paper drew on multiple data sources to explore illegal street racing and the management of this issue in Australia. First, the paper reviews the relevant legislation in each Australian state to describe the cross-jurisdictional similarities and differences in approaches. It also describes some results from focus group discussions and a quantitative online survey with drivers who self-report engaging in illegal street racing and associated behaviours in Queensland, Australia. It was found that approaches to dealing with illegal street racing and associated risky driving behaviours in each Australian state are similar, with increasing periods of vehicle impoundment (leading to vehicle forfeiture) applied to repeat hooning offences within prescribed periods. Participants in the focus groups and respondents to the questionnaire generally felt these penalty periods were severe, with perceptions of severity increasing with the length of the penalty period. It was concluded that there is a need for each jurisdiction to objectively evaluate the effectiveness of their vehicle impoundment and forfeiture programs for hooning. These evaluations should compare the relative costs of these programs (e.g., enforcement, unrecovered towing and storage fees, and court costs) to the observed benefits (e.g., reduction in target behaviours, reduction in community complaints, and reduction in the number and severity of associated crashes).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stylized facts that motivate this thesis include the diversity in growth patterns that are observed across countries during the process of economic development, and the divergence over time in income distributions both within and across countries. This thesis constructs a dynamic general equilibrium model in which technology adoption is costly and agents are heterogeneous in their initial holdings of resources. Given the households‟ resource level, this study examines how adoption costs influence the evolution of household income over time and the timing of transition to more productive technologies. The analytical results of the model constructed here characterize three growth outcomes associated with the technology adoption process depending on productivity differences between the technologies. These are appropriately labeled as „poverty trap‟, „dual economy‟ and „balanced growth‟. The model is then capable of explaining the observed diversity in growth patterns across countries, as well as divergence of incomes over time. Numerical simulations of the model furthermore illustrate features of this transition. They suggest that that differences in adoption costs account for the timing of households‟ decision to switch technology which leads to a disparity in incomes across households in the technology adoption process. Since this determines the timing of complete adoption of the technology within a country, the implications for cross-country income differences are obvious. Moreover, the timing of technology adoption appears to be impacts on patterns of growth of households, which are different across various income groups. The findings also show that, in the presence of costs associated with the adoption of more productive technologies, inequalities of income and wealth may increase over time tending to delay the convergence in income levels. Initial levels of inequalities in the resources also have an impact on the date of complete adoption of more productive technologies. The issue of increasing income inequality in the process of technology adoption opens up another direction for research. Specifically increasing inequality implies that distributive conflicts may emerge during the transitional process with political- economy consequences. The model is therefore extended to include such issues. Without any political considerations, taxes would leads to a reduction in inequality and convergence of incomes across agents. However this process is delayed if politico-economic influences are taken into account. Moreover, the political outcome is sub optimal. This is essentially due to the fact that there is a resistance associated with the complete adoption of the advanced technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulation study of a custom power park (CPP) is presented. It is assumed that the park contains unbalanced and nonlinear loads in addition to a sensitive load. Two different types of compensators are used separately to protect the sensitive load against unbalance and distortion caused by the other loads. It has been shown that a shunt compensator can regulate the voltage of the CPP bus, whereas the series compensator can only regulate the sensitive load terminal voltage. Additional issues such as the load transfer through a static transfer switch, detection of sag/fault etc. are also discussed. The concepts are validated through PSCAD/EMTDC simulation studies on a sample distribution system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim was to construct and advise on the use of a cost-per-wear model based on contact lens replacement frequency, to form an equitable basis for cost comparison. ---------- Methods: The annual cost of professional fees, contact lenses and solutions when wearing daily, two-weekly and monthly replacement contact lenses is determined in the context of the Australian market for spherical, toric and multifocal prescription types. This annual cost is divided by the number of times lenses are worn per year, resulting in a ‘cost-per-wear’. The model is presented graphically as the cost-per-wear versus the number of times lenses are worn each week for daily replacement and reusable (two-weekly and monthly replacement) lenses.---------- Results: The cost-per-wear for two-weekly and monthly replacement spherical lenses is almost identical but decreases with increasing frequency of wear. The cost-per-wear of daily replacement spherical lenses is lower than for reusable spherical lenses, when worn from one to four days per week but higher when worn six or seven days per week. The point at which the cost-per-wear is virtually the same for all three spherical lens replacement frequencies (approximately AUD$3.00) is five days of lens wear per week. A similar but upwardly displaced (higher cost) pattern is observed for toric lenses, with the cross-over point occurring between three and four days of wear per week (AUD$4.80). Multifocal lenses have the highest price, with cross-over points for daily versus two-weekly replacement lenses at between four and five days of wear per week (AUD$5.00) and for daily versus monthly replacement lenses at three days per week (AUD$5.50).---------- Conclusions: This cost-per-wear model can be used to assist practitioners and patients in making an informed decision in relation to the cost of contact lens wear as one of many considerations that must be taken into account when deciding on the most suitable lens replacement modality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improving efficiency and flexibility in pulsed power supply technologies are the most substantial concerns of pulsed power systems specifically for plasma generation. Recently, the improvement of pulsed power supply becomes of greater concern due to extension of pulsed power applications to environmental and industrial areas. A current source based topology is proposed in this paper which gives the possibility of power flow control. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations have been carried out in Matlab/SIMULINK platform to verify the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of the costs associated with greenfield residential development are apparent and tangible. For example, regulatory fees, government taxes, acquisition costs, selling fees, commissions and others are all relatively easily identified since they represent actual costs incurred at a given point in time. However, identification of holding costs are not always immediately evident since by contrast they characteristically lack visibility. One reason for this is that, for the most part, they are typically assessed over time in an ever-changing environment. In addition, wide variations exist in development pipeline components: they are typically represented from anywhere between a two and over sixteen years time period - even if located within the same geographical region. Determination of the starting and end points, with regards holding cost computation, can also prove problematic. Furthermore, the choice between application of prevailing inflation, or interest rates, or a combination of both over time, adds further complexity. Although research is emerging in these areas, a review of the literature reveals attempts to identify holding cost components are limited. Their quantification (in terms of relative weight or proportionate cost to a development project) is even less apparent; in fact, the computation and methodology behind the calculation of holding costs varies widely and in some instances completely ignored. In addition, it may be demonstrated that ambiguities exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Yet their impact on housing affordability is widely acknowledged to be profound, with their quantification potentially maximising the opportunities for delivering affordable housing. This paper seeks to build on earlier investigations into those elements related to holding costs, providing theoretical modelling of the size of their impact - specifically on the end user. At this point the research is reliant upon quantitative data sets, however additional qualitative analysis (not included here) will be relevant to account for certain variations between expectations and actual outcomes achieved by developers. Although this research stops short of cross-referencing with a regional or international comparison study, an improved understanding of the relationship between holding costs, regulatory charges, and housing affordability results.