904 resultados para Surfaces, Representation of.
Resumo:
This article examines the representation of Indigenous sexuality on Australian television drama since the 1970s, suggesting the political importance of such representations. In 1976 Justine Saunders became the first regular Indigenous character on an Australian television drama series, as the hairdresser Rhonda Jackson in Number 96. She was presented as sexually attractive, but this was expressed through a rape scene after a party. Twenty five years later, Deborah Mailman starred in The Secret Life of Us, as Kelly, who is also presented as sexually attractive. But her character can be seen in many romantic relationships. The article explores changing representations that moved us from Number 96 to The Secret Life of Us, via The Flying Doctors and Heartland. It suggests that in representations of intimate and loving relationships on screen it has only recently become possible to see hopeful models for interaction between Indigenous and non-Indigenous Australians.
Resumo:
Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.
Resumo:
Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.
Resumo:
We investigated the relative importance of vision and proprioception in estimating target and hand locations in a dynamic environment. Subjects performed a position estimation task in which a target moved horizontally on a screen at a constant velocity and then disappeared. They were asked to estimate the position of the invisible target under two conditions: passively observing and manually tracking. The tracking trials included three visual conditions with a cursor representing the hand position: always visible, disappearing simultaneously with target disappearance, and always invisible. The target’s invisible displacement was systematically underestimated during passive observation. In active conditions, tracking with the visible cursor significantly decreased the extent of underestimation. Tracking of the invisible target became much more accurate under this condition and was not affected by cursor disappearance. In a second experiment, subjects were asked to judge the position of their unseen hand instead of the target during tracking movements. Invisible hand displacements were also underestimated when compared with the actual displacement. Continuous or brief presentation of the cursor reduced the extent of underestimation. These results suggest that vision–proprioception interactions are critical for representing exact target–hand spatial relationships, and that such sensorimotor representation of hand kinematics serves a cognitive function in predicting target position. We propose a hypothesis that the central nervous system can utilize information derived from proprioception and/or efference copy for sensorimotor prediction of dynamic target and hand positions, but that effective use of this information for conscious estimation requires that it be presented in a form that corresponds to that used for the estimations.
Resumo:
Jack's Bay expands understandings of the role of photographic media in the representation of landscapes. It does so by combining architectural construction with B&W photographic processing techniques. A purpose-built room-sized camera obscura is first constructed over a portion of the landscape to be recorded. Photosensitive paper is applied to the interior wall surfaces and is exposed to the inverted light entering a small aperture. These photographs are subsequently developed within the camera itself and consequently 'suffer' embellishments and aberrations from the makeshift darkroom conditions. In this way the specificity of both the landscape and the event of its recording are registered in the final image. Many images were destroyed in the process. The idea of the work is to help the viewer reflect on the role media plays in our understanding of landscape and to thus question the means by which they themselves record and interpret landscape representations.
Resumo:
Corackerup Breakaway expands understandings of the role of photographic media in the representation of landscapes. It does so by combining architectural construction with B&W photographic processing techniques. A purpose-built room-sized camera obscura is first constructed over a portion of the landscape to be recorded. Photosensitive paper is applied to the interior wall surfaces and is exposed to the inverted light entering a small aperture. These photographs are subsequently developed within the camera itself and consequently 'suffer' embellishments and aberrations from the makeshift darkroom conditions. In this way the specificity of both the landscape and the event of its recording are registered in the final image. Many images were destroyed in the process. The idea of the work is to help the viewer reflect on the role media plays in our understanding of landscape and to thus question the means by which they themselves record and interpret landscape representations.
Resumo:
Working Sheep expands understandings of the role of photographic media in the representation of landscapes. It does so by combining architectural construction with B&W photographic processing techniques. A purpose-built room-sized camera obscura is first constructed over a portion of the landscape to be recorded. Photosensitive paper is applied to the interior wall surfaces and is exposed to the inverted light entering a small aperture. These photographs are subsequently developed within the camera itself and consequently 'suffer' embellishments and aberrations from the makeshift darkroom conditions. In this way the specificity of both the landscape and the event of its recording are registered in the final image. Many images were destroyed in the process. The idea of the work is to help the viewer reflect on the role media plays in our understanding of landscape and to thus question the means by which they themselves record and interpret landscape representations.
Resumo:
Any biomaterial implanted within the human body is influenced by the interactions that take place between its surface and the surrounding biological milieu. These interactions are known to influence the tissue interface dynamic, and thus act to emphasize the need to study cell-surface interactions as part of any biomaterial design process. The work described here investigates the relationship between human osteoblast attachment, spreading and focal contact formation on selected surfaces using immunostaining and digital image processing for vinculin, a key focal adhesion component. Our observations show that a relationship exists between levels of cell attachment, the degree of vinculin-associated plaque formation and biocompatibility. It also suggests that cell adhesion is not indicative of how supportive a substrate is to cell spreading, and that cell spreading
Resumo:
The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers’ crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.
Resumo:
Immersive environments are part of a recent media innovation that allow users to become so involved within a computer-based simulated environment that they feel part of that virtual world (Grigorovici, 2003). A specific example is Second Life, which is an internet-based, three-dimensional immersive virtual world in which users create an online representation of themselves (an avatar) to play games and interact socially with thousands of people simultaneously. This study focuses on Second Life as an example of an immersive environment, as it is the largest adult freeform virtual world, home to 12 million avatars (IOWA State University, 2008). Already in Second Life there are more than 100 real-life brands from a range of industries, including automotive, professional services, and consumer goods and travel, among others (KZero, 2007; New Business Horizons, 2009). Compared to traditional advertising media, this interactive media can immerse users in the environment. As a result of this interactivity, users can become more involved with a virtual environment, resulting in prolonged usage over weeks, months and even years. Also, it can facilitate presence. Despite these developments, little is known about the effectiveness of marketing messages in a virtual world context. Marketers are incorporating products into Second Life using a strategy of online product placement. This study, therefore, explores the perceived effectiveness of online product placement in Second Life in terms of effects on product/brand recall, purchase intentions and trial. This research examines the association between individuals’ involvement with Second Life and online product placement effectiveness, as well as the relationship between individuals’ Second Life involvement and the effectiveness of online product placement. In addition, it investigates the association of immersion and product placement involvement. It also examines the impact of product placement involvement on online product placement effectiveness and the role of presence in affecting this relationship. An exploratory study was conducted for this research using semi-structured in-depth interviews face-to-face, email-based and in-world. The sample comprised 24 active Second Life users. Results indicate that product placement effectiveness is not directly associated with Second Life involvement, but rather effectiveness is impacted through the effect of Second Life involvement on product placement involvement. A positive relationship was found between individuals’ product placement involvement and online product placement effectiveness. Findings also indicate that online product placement effectiveness is not directly associated with immersion. Rather, it appears that effectiveness is impacted through the effect of immersion on product placement involvement. Moreover, higher levels of presence appear to have a positive impact on the relationship between product placement involvement and product placement effectiveness. Finally, a model was developed from this qualitative study for future testing. In terms of theoretical contributions, this study provides a new model for testing the effectiveness of product placement within immersive environments. From a methodological perspective, in-world interviews as a new research method were undertaken. In terms of a practical contribution, findings identified useful information for marketers and advertising agencies that aim to promote their products in immersive virtual environments like Second Life.
Resumo:
This paper discusses the outcomes of a research project on nutrients build-up on urban road surfaces. Nutrient build-up was investigated on road sites belonging to residential, industrial and commercial land use. Collected build-up samples were separated into five particle size ranges and were tested for total nitrogen (TN), total phosphorus (TP) and sub species of nutrients, namely, NO2-, NO3-, TKN and PO43-. Multivariate analytical techniques were used to analyse the data and to develop detailed understanding on build-up. Data analysis revealed that the solids loads on urban road surfaces are highly influenced by factors such as land use, antecedent dry period and traffic volume. However, the nutrient build-up process was found to be independent of the type of land use. It was solely dependent on the particle size of solids build-up. Most of the nutrients were associated with the particle size range <150 μm. Therefore, the removal of particles below 150 µm from road surfaces is of importance for the removal of nitrogen and phosphorus from road surface solids build-up. It is also important to consider the differences in the composition of nitrogen and phosphorus build-up in the context of designing effective stormwater quality mitigation strategies.
Resumo:
According to statistics and trend data, women continue to be substantially under- represented in the Australian professoriate, and growth in their representation has been slow despite the plethora of equity programs. While not disputing these facts, we propose that examining gender equity by cohort provides a complementary perspective on the status of gender equity in the professoriate. Based on over 500 survey responses, we detected substantial similarities between women and men who were appointed as professors or associate professors between 2005 and 2008. There were similar proportions of women and men appointed via external or internal processes or by invitation. Additionally, similar proportions of women and men professors expressed a marked preference for research over teaching. Furthermore, there were similar distributions between the genders in the age of appointment to the professoriate. However, a notable gender difference was that women were appointed to the professoriate on average 1.9 years later than mens. This later appointment provides one reason for the lower representation of women compared to men in the professoriate. It also raises questions of the typical length of time that women and men remain in the (paid) professoriate and reasons why they might leave it. A further similarity between women and men in this cohort was their identification of motivation and circumstances as key factors in their career orientation. However, substantially more women identified motivation than circumstances and the situation was reversed for men. The open-ended survey responses also provided confirmation that affirmative action initiatives make a difference to women’s careers.
Resumo:
Osteoporotic spinal fractures are a major concern in ageing Western societies. This study develops a multi-scale finite element (FE) model of the osteoporotic lumbar vertebral body to study the mechanics of vertebral compression fracture at both the apparent (whole vertebral body) and micro-structural (internal trabecular bone core)levels. Model predictions were verified against experimental data, and found to provide a reasonably good representation of the mechanics of the osteoporotic vertebral body. This novel modelling methodology will allow detailed investigation of how trabecular bone loss in osteoporosis affects vertebral stiffness and strength in the lumbar spine.
Resumo:
International assessments of student science achievement, and growing evidence of students' waning interest in school science, have ensured that the development of scientific literacy continues to remain an important educational priority. Furthermore, researchers have called for teaching and learning strategies to engage students in the learning of science, particularly in the middle years of schooling. This study extends previous national and international research that has established a link between writing and learning science. Specifically, it investigates the learning experiences of eight intact Year 9 science classes as they engage in the writing of short stories that merge scientific and narrative genres (i.e., hybridised scientific narratives) about the socioscientific issue of biosecurity. This study employed a triangulation mixed methods research design, generating both quantitative and qualitative data, in order to investigate three research questions that examined the extent to which the students' participation in the study enhanced their scientific literacy; the extent to which the students demonstrated conceptual understanding of related scientific concepts through their written artefacts and in interviews about the artefacts; and the extent to which the students' participation in the project influenced their attitudes toward science and science learning. Three aspects of scientific literacy were investigated in this study: conceptual science understandings (a derived sense of scientific literacy), the students' transformation of scientific information in written stories about biosecurity (simple and expanded fundamental senses of scientific literacy), and attitudes toward science and science learning. The stories written by students in a selected case study class (N=26) were analysed quantitatively using a series of specifically-designed matrices that produce numerical scores that reflect students' developing fundamental and derived senses of scientific literacy. All students (N=152) also completed a Likert-style instrument (i.e., BioQuiz), pretest and posttest, that examined their interest in learning science, science self-efficacy, their perceived personal and general value of science, their familiarity with biosecurity issues, and their attitudes toward biosecurity. Socioscientific issues (SSI) education served as a theoretical framework for this study. It sought to investigate an alternative discourse with which students can engage in the context of SSI education, and the role of positive attitudes in engaging students in the negotiation of socioscientific issues. Results of the study have revealed that writing BioStories enhanced selected aspects of the participants' attitudes toward science and science learning, and their awareness and conceptual understanding of issues relating to biosecurity. Furthermore, the students' written artefacts alone did not provide an accurate representation of the level of their conceptual science understandings. An examination of these artefacts in combination with interviews about the students' written work provided a more comprehensive assessment of their developing scientific literacy. These findings support extensive calls for the utilisation of diversified writing-to-learn strategies in the science classroom, and therefore make a significant contribution to the writing-to-learn science literature, particularly in relation to the use of hybridised scientific genres. At the same time, this study presents the argument that the writing of hybridised scientific narratives such as BioStories can be used to complement the types of written discourse with which students engage in the negotiation of socioscientific issues, namely, argumentation, as the development of positive attitudes toward science and science learning can encourage students' participation in the discourse of science. The implications of this study for curricular design and implementation, and for further research, are also discussed.
Resumo:
This thesis introduces the problem of conceptual ambiguity, or Shades of Meaning (SoM) that can exist around a term or entity. As an example consider President Ronald Reagan the ex-president of the USA, there are many aspects to him that are captured in text; the Russian missile deal, the Iran-contra deal and others. Simply finding documents with the word “Reagan” in them is going to return results that cover many different shades of meaning related to "Reagan". Instead it may be desirable to retrieve results around a specific shade of meaning of "Reagan", e.g., all documents relating to the Iran-contra scandal. This thesis investigates computational methods for identifying shades of meaning around a word, or concept. This problem is related to word sense ambiguity, but is more subtle and based less on the particular syntactic structures associated with or around an instance of the term and more with the semantic contexts around it. A particularly noteworthy difference from typical word sense disambiguation is that shades of a concept are not known in advance. It is up to the algorithm itself to ascertain these subtleties. It is the key hypothesis of this thesis that reducing the number of dimensions in the representation of concepts is a key part of reducing sparseness and thus also crucial in discovering their SoMwithin a given corpus.