846 resultados para Semantic Publishing, Linked Data, Bibliometrics, Informetrics, Data Retrieval, Citations
Resumo:
An electro-optically (EO) modulated oxide-confined vertical-cavity surface-emitting laser (VCSEL) containing a saturable absorber in the VCSEL cavity is studied. The device contains an EO modulator section that is resonant with the VCSEL cavity. A type-II EO superlattice medium is employed in the modulator section and shown to result in a strong negative EO effect in weak electric fields. Applying the reverse bias voltages to the EO section allows triggering of short pulses in the device. Digital data transmission (return-to-zero pseudo-random bit sequence, 27-1) at 10Gb/s at bit-error-rates well below 10-9 is demonstrated. © 2014 AIP Publishing LLC.
Resumo:
© Springer International Publishing Switzerland 2015. Making sound asset management decisions, such as whether to replace or maintain an ageing underground water pipe, are critical to ensure that organisations maximise the performance of their assets. These decisions are only as good as the data that supports them, and hence many asset management organisations are in desperate need to improve the quality of their data. This chapter reviews the key academic research on data quality (DQ) and Information Quality (IQ) (used interchangeably in this chapter) in asset management, combines this with the current DQ problems faced by asset management organisations in various business sectors, and presents a classification of the most important DQ problems that need to be tackled by asset management organisations. In this research, eleven semi structured interviews were carried out with asset management professionals in a range of business sectors in the UK. The problems described in the academic literature were cross checked against the problems found in industry. In order to support asset management professionals in solving these problems, we categorised them into seven different DQ dimensions, used in the academic literature, so that it is clear how these problems fit within the standard frameworks for assessing and improving data quality. Asset management professionals can therefore now use these frameworks to underpin their DQ improvement initiatives while focussing on the most critical DQ problems.
Resumo:
AIM: To evaluate the suitability of reference genes in gastric tissue samples and cell lines.METHODS: the suitability of genes ACTB, B2M, GAPDH, RPL29, and 18S rRNA was assessed in 21 matched pairs of neoplastic and adjacent nonneoplastic gastric tissues from patients with gastric adenocarcinoma, 27 normal gastric tissues from patients without cancer, and 4 cell lines using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). the ranking of the best single and combination of reference genes was determined by NormFinder, geNorm (TM), BestKeeper, and DataAssist (TM). in addition, GenEx software was used to determine the optimal number of reference genes. To validate the results, the mRNA expression of a target gene, DNMT1, was quantified using the different reference gene combinations suggested by the various software packages for normalization.RESULTS: ACTB was the best reference gene for all gastric tissues, cell lines and all gastric tissues plus cell lines. GAPDH + B2M or ACTB + B2M was the best combination of reference genes for all the gastric tissues. On the other hand, ACTB + B2M was the best combination for all the cell lines tested and was also the best combination for analyses involving all the gastric tissues plus cell lines. According to the GenEx software, 2 or 3 genes were the optimal number of references genes for all the gastric tissues. the relative quantification of DNMT1 showed similar patterns when normalized by each combination of reference genes. the level of expression of DNMT1 in neoplastic, adjacent non-neoplastic and normal gastric tissues did not differ when these samples were normalized using GAPDH + B2M (P = 0.32), ACTB + B2M (P = 0.61), or GAPDH + B2M + ACTB (P = 0.44).CONCLUSION: GAPDH + B2M or ACTB + B2M is the best combination of reference gene for all the gastric tissues, and ACTB + B2M is the best combination for the cell lines tested. (C) 2013 Baishideng Publishing Group Co., Limited. All rights reserved.
Resumo:
Li, Longzhuang, Liu, Yonghuai, Obregon, A., Weatherston, M. Visual Segmentation-Based Data Record Extraction From Web Documents. Proceedings of IEEE International Conference on Information Reuse and Integration, 2007, pp. 502-507. Sponsorship: IEEE
Resumo:
This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.
Resumo:
One problem in most three-dimensional (3D) scalar data visualization techniques is that they often overlook to depict uncertainty that comes with the 3D scalar data and thus fail to faithfully present the 3D scalar data and have risks which may mislead users’ interpretations, conclusions or even decisions. Therefore this thesis focuses on the study of uncertainty visualization in 3D scalar data and we seek to create better uncertainty visualization techniques, as well as to find out the advantages/disadvantages of those state-of-the-art uncertainty visualization techniques. To do this, we address three specific hypotheses: (1) the proposed Texture uncertainty visualization technique enables users to better identify scalar/error data, and provides reduced visual overload and more appropriate brightness than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (2) The proposed Linked Views and Interactive Specification (LVIS) uncertainty visualization technique enables users to better search max/min scalar and error data than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (3) The proposed Probabilistic Query uncertainty visualization technique, in comparison to traditional Direct Volume Rendering (DVR) methods, enables radiologists/physicians to better identify possible alternative renderings relevant to a diagnosis and the classification probabilities associated to the materials appeared on these renderings; this leads to improved decision support for diagnosis, as demonstrated in the domain of medical imaging. For each hypothesis, we test it by following/implementing a unified framework that consists of three main steps: the first main step is uncertainty data modeling, which clearly defines and generates certainty types of uncertainty associated to given 3D scalar data. The second main step is uncertainty visualization, which transforms the 3D scalar data and their associated uncertainty generated from the first main step into two-dimensional (2D) images for insight, interpretation or communication. The third main step is evaluation, which transforms the 2D images generated from the second main step into quantitative scores according to specific user tasks, and statistically analyzes the scores. As a result, the quality of each uncertainty visualization technique is determined.
Resumo:
As more diagnostic testing options become available to physicians, it becomes more difficult to combine various types of medical information together in order to optimize the overall diagnosis. To improve diagnostic performance, here we introduce an approach to optimize a decision-fusion technique to combine heterogeneous information, such as from different modalities, feature categories, or institutions. For classifier comparison we used two performance metrics: The receiving operator characteristic (ROC) area under the curve [area under the ROC curve (AUC)] and the normalized partial area under the curve (pAUC). This study used four classifiers: Linear discriminant analysis (LDA), artificial neural network (ANN), and two variants of our decision-fusion technique, AUC-optimized (DF-A) and pAUC-optimized (DF-P) decision fusion. We applied each of these classifiers with 100-fold cross-validation to two heterogeneous breast cancer data sets: One of mass lesion features and a much more challenging one of microcalcification lesion features. For the calcification data set, DF-A outperformed the other classifiers in terms of AUC (p < 0.02) and achieved AUC=0.85 +/- 0.01. The DF-P surpassed the other classifiers in terms of pAUC (p < 0.01) and reached pAUC=0.38 +/- 0.02. For the mass data set, DF-A outperformed both the ANN and the LDA (p < 0.04) and achieved AUC=0.94 +/- 0.01. Although for this data set there were no statistically significant differences among the classifiers' pAUC values (pAUC=0.57 +/- 0.07 to 0.67 +/- 0.05, p > 0.10), the DF-P did significantly improve specificity versus the LDA at both 98% and 100% sensitivity (p < 0.04). In conclusion, decision fusion directly optimized clinically significant performance measures, such as AUC and pAUC, and sometimes outperformed two well-known machine-learning techniques when applied to two different breast cancer data sets.
Resumo:
BACKGROUND: Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. METHODOLOGY: The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. PRINCIPAL FINDINGS: The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. CONCLUSIONS: Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.
Resumo:
In this article, the buildingEXODUS (V1.1) evacuation model is described and discussed and attempts at qualitative and quantitative model validation are presented. The data set used for the validation is the Tsukuba pavilion evacuation data. This data set is of particular interest as the evacuation was influenced by external conditions, namely inclement weather. As part of the validation exercise, the sensitivity of the buildingEXODUS predictions to a range of variables and conditions is examined, including: exit flow capacity, occupant response times, and the impact of external conditions on the developing evacuation. The buildingEXODUS evacuation model was found to produce good qualitative and quantitative agreement with the experimental data.
Resumo:
The aim of this work is to improve retrieval and navigation services on bibliographic data held in digital libraries. This paper presents the design and implementation of OntoBib¸ an ontology-based bibliographic database system that adopts ontology-driven search in its retrieval. The presented work exemplifies how a digital library of bibliographic data can be managed using Semantic Web technologies and how utilizing the domain specific knowledge improves both search efficiency and navigation of web information and document retrieval.
Resumo:
Two evacuation trials were conducted within Brazilian library facilities by FSEG staff in January 2005. These trials represent one of the first such trials conducted in Brazil. The purpose of these evacuation trials was to collect pre-evacuation time data from a population with a cultural background different to that found in western Europe. In total some 34 pre-evacuation times were collected from the experiments and these ranged from 5 to 98 seconds with a mean pre-evacuation time of 46.7 seconds
Resumo:
This article provides a broad overview of project HEED (High-rise Evacuation Evaluation Database) and the methodologies employed in the collection and storage of first-hand accounts of evacuation experiences derived from face-to-face interviews of evacuees from the World Trade Center (WTC) Twin Towers complex on September 11, 2001. In particular, the article describes the development of the HEED database. This is a flexible research tool which contains qualitative type data in the form of coded evacuee experiences along with the full interview transcripts. The data and information captured and stored in the HEED database is not only unique, but provides a means to address current and emerging issues relating to human factors associated with the evacuation of high-rise buildings
Resumo:
The Continuous Plankton Recorder (CPR) survey has been sampling plankton in the North Sea since 1931. However the identification of the larval and juvenile fish taken in the survey has not been a part of the routine analysis of the samples. Specialist analysis of the fish was carried out between 1948 and the early 1980s but the data were available as hard copy only. As part of MarBEF, data on >60 taxa from 1948 to 1972 have been entered on a database which is now linked to EUROBIS to show the biogeographical information and the data are available for general research. Examples of the data are shown. These data provide a background on the variability of fish stocks before the recent period of rapid warming and in some cases before significant fisheries developed. Data for subsequent years will be made available as possible and work is now underway to bring the analysis up to date. This will provide time series over six decades.
Resumo:
The open service network for marine environmental data (NETMAR) project uses semantic web technologies in its pilot system which aims to allow users to search, download and integrate satellite, in situ and model data from open ocean and coastal areas. The semantic web is an extension of the fundamental ideas of the World Wide Web, building a web of data through annotation of metadata and data with hyperlinked resources. Within the framework of the NETMAR project, an interconnected semantic web resource was developed to aid in data and web service discovery and to validate Open Geospatial Consortium Web Processing Service orchestration. A second semantic resource was developed to support interoperability of coastal web atlases across jurisdictional boundaries. This paper outlines the approach taken to producing the resource registry used within the NETMAR project and demonstrates the use of these semantic resources to support user interactions with systems. Such interconnected semantic resources allow the increased ability to share and disseminate data through the facilitation of interoperability between data providers. The formal representation of geospatial knowledge to advance geospatial interoperability is a growing research area. Tools and methods such as those outlined in this paper have the potential to support these efforts.
Resumo:
The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEls) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-sigma data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.