990 resultados para Restriction Fragment Length Polymorphism
Resumo:
Introduction Torque teno virus (TTV) and SEN virus are circular single-stranded DNA viruses that cause blood-borne infections. The SEN virus (SEN-V) was originally detected in the serum of an injection drug user infected with human immunodeficiency virus (HIV). Recently TTV was discovered as a potential causative agent of non-A-E hepatitis. The aim of this study was to investigate the prevalence of the SEN-V-D/H and TTV in HIV patients and healthy blood donors in Iran. Methods One hundred and fifty HIV patients with a mean age of 50.46 ± 18.46 years and 150 healthy blood donors with a mean age of 48.16 ± 13.73 years were included in this study. TTV and SEN-V were detected by the PCR and were quantitatively assayed by competitive PCR (nested and semi-nested PCR). Restriction fragment length polymorphisms (RFLPs) were used to determine the heterogeneity of TTV. Results TTV and SEN-V were detected 96 (64%) and 84 (56%) of 150 HIV patients respectively. These rates were 34% (n=51) and 37.33% (n=56) in healthy blood donors (significant, p<0.05). PCR detected SEN-V/TTV DNA from 32 of the healthy blood donors (21.33%), while 65 (43.33%) of HIV patients were positive for SEN-V/TTV DNA. Of 150 HIV patients, 32.66% and 23.33% were positive for SEN-V-H and SEN-V-D, respectively and 18.66% (n=28) were co-infected with SEN-V-D/H. Conclusions The prevalence of SEN-VD/H and TTV is higher in HIV patients than in healthy blood donors in Southern Iran. Our results suggest that TTV and SEN-V might play a role in the development of liver disease in patients with immunodeficiency diseases.
Resumo:
This paper reports recent observations from our laboratory dealing with the anti-schistosome drugs hycanthone (HC) and praziquantel (PZQ). In particular, we discuss a laboratory model of drug resistance to HC in Schistosoma mansoni and show that drug sensitive and resistant lines of the parasite can be differentiated on the basis of restriction fragment length polymorphisms using homologous ribosomal gene probes. In addition, we summarize data demonstrating that effective chemotherapy of S. mansoni infection with PZQ in mice requires the presence of host anti-parasite antibodies. These antibodies bind to PZQ treated worms and may be involved in an antibody-dependent cellular cytotoxicity reactions which result in the clearance of worms from the vasculature.
Resumo:
Although the knowledge on heavy metal hyperaccumulation mechanisms is increasing, the genetic basis of cadmium (Cd) hyperaccurnulation remains to be elucidated. Thlaspi caerulescens is an attractive model since Cd accumulation polymorphism observed in this species suggests genetic differences between populations with low versus high Cd hyperaccumulation capacities. In our study, a methodology is proposed to analyse at a regional scale the genetic differentiation of T. caerulescens natural populations in relation to Cd hyperaccumulation capacity while controlling for different environmental, soil, plant parameters and geographic origins of populations. Twenty-two populations were characterised with AFLP markers and cpDNA polymorphism. Over all loci, a partial Mantel test showed no significant genetic structure with regard to the Cd hyperaccumulation capacity. Nevertheless, when comparing the marker variation to a neutral model, seven AFLP fragments (9% of markers) were identified as presenting particularly high genetic differentiation between populations with low and high Cd hyperaccurnulation capacity. Using simulations, the number of outlier loci was showed to be significantly higher than expected at random. These loci presented a genetic structure linked to Cd hyperaccumulation capacity independently of the geography, environment, soil parameters and Zn, Pb, Fe and Cu concentrations in plants. Using a canonical correspondence analysis, we identified three of them as particularly related to the Cd hyperaccumutation capacity. This study demonstrates that populations with low and high hyperaccurnulation capacities can be significantly distinguished based on molecular data. Further investigations with candidate genes and mapped markers may allow identification and characterization of genomic regions linked to factors involved in Cd hyperaccumulation.
Resumo:
We have developed and tested a new way of typing Trypanosoma cruzi, mamely the use of cloned nuclear DNA fragments as genetic markers. Restriction fragment length polymorphisms were verified on Soutern blots hybridized to random probes. Fragment patterns were analyzed and dendrograms constructed. Our results on well characterized laboratory strains correlate well to published isoenzyme studies. Some of the probes were also hybridized to chromosomes separated by pulse field gel electrophoresis a higher degree of heterogeneity was observed at this level.
Resumo:
To determine the genomic polymorphism and biological properties present in HIV-1 Brazilian isolates, were analyzed five viral isolates obtained from patients residing in Rio de Janeiro (P1 and P5), São Paulo (P3) and Bahia (P2 and P4) states. For each viral isolate in vitro characteristics such as replication rate, syncytium-inducing capacity and cell death were observed in lymphoblastoid (H9, CEM and peripheral blood mononuclear cells) as well as monocytoid (U937) cells. In addition, the evaluation of the restriction fragment lenght polymorphism of these isolates was also performed using a panel of endonucleases such as Hind III, Bgl II, Sac I, Pst I, Kpn I and Eco RI. One of the isolates (P1), showed the highest phenotypic and genotypic divergence, when compared to others. The results found suggest a HIV heterogeneity in Brazil similar to that already described in other regions of the world.
Resumo:
Different molecular-genetic methods were used to identify a cohort of Leishmania strains from natural foci of zoonotic cutaneous leishmaniasis located in Central Asia, on the former USSR territory. The results obtained using isoenzymes, PCR, restriction fragment length polymorphisms of kDNA and molecular hybridization techniques are discussed in terms of their applicability, discrimination power and feasibility for answering questions related to molecular epidemiological research and for detecting mixed Leishmania infections
Resumo:
Molecular characterization of one stable strain of Trypanosoma cruzi, the 21 SF, representative of the pattern of strains isolated from the endemic area of São Felipe, State of Bahia, Brazil, maintained for 15 years in laboratory by serial passages in mice and classified as biodeme Type II and zymodeme 2 has been investigated. The kinetoplast DNA (kDNA) of parental strain, 5 clones and 14 subclones were analyzed. Schizodeme was established by comparative study of the fragments obtained from digestion of the 330-bp fragments amplified by polymerase chain reaction (PCR) from the variable regions of the minicicles, and digested by restriction endonucleases Rsa I and Hinf I. Our results show a high percentual of similarity between the restriction fragment lenght polymorphism (RFLP) for the parental strain and its clones and among these individual clones and their subclones at a level of 80 to 100%.This homology indicates a predominance of the same "principal clone" in the 21SF strain and confirms the homogeneity previously observed at biological and isozymic analysis. These results suggest the possibility that the T. cruzi strains with similar biological and isoenzymic patterns, circulating in this endemic area, are representative of one dominant clone. The presence of "principal clones" could be responsible for a predominant tropism of the parasites for specific organs and tissues and this could contribute to the pattern of clinico-pathological manifestations of Chagas's disease in one geographical area.
Resumo:
Mycobacterium kansasii is the most common cause of pulmonary nontuberculous mycobacteria infection and classical identification of this pathogen needs a time consuming phenotypic tests. Polymerase chain reaction-restriction fragment lenght polymorphism analysis (PRA) of the gene enconding for the 65kDa heat shock (hsp65) protein offers an easy, rapid, and inexpensive procedure to identify and subtype M. kansasii isolates. In the present study, we performed a retrospective analysis of patients who had mycobacteria identified on the basis of phenotypic tests by means of a review of database at Mycobacteria Laboratory of the Instituto Adolfo Lutz in the period 1995-1998. A total of 9381 clinical isolates were analyzed of which 7777 (82.9%) were identified as M. tuberculosis complex and 1604 (17.1%) as nontuberculous mycobacteria. Of the 296 M. kansasii isolates, 189 (63.8%) isolates obtained from 119 patients were viable and were analyzed by PRA-hsp65. Hundred eight two (98.9%) were classified as M. kansasii type I. Two isolates were classified as type II and III and five isolates were characterized as other Mycobacterium species. Clinical isolates of M. kansasii in the state of São Paulo was almost exclusively subtype I regardless of HIV status.
Resumo:
AimWe take a comparative phylogeographical approach to assess whether three species involved in a specialized oil-rewarding pollination system (i.e. Lysimachia vulgaris and two oil-collecting bees within the genus Macropis) show congruent phylogeographical trajectories during post-glacial colonization processes. Our working hypothesis is that within specialized mutualistic interactions, where each species relies on the co-occurrence of the other for survival and/or reproduction, partners are expected to show congruent evolutionary trajectories, because they are likely to have followed parallel migration routes and to have shared glacial refugia. LocationWestern Palaearctic. MethodsOur analysis relies on the extensive sampling of 104 Western Palaearctic populations (totalling 434, 159 and 74 specimens of Lysimachiavulgaris, Macropiseuropaea and Macropisfulvipes, respectively), genotyped with amplified fragment length polymorphism. Based on this, we evaluated the regional genetic diversity (Shannon diversity and allele rarity index) and genetic structure (assessed using structure, population networks, isolation-by-distance and spatial autocorrelation metrics) of each species. Finally, we compared the general phylogeographical patterns obtained. ResultsContrary to our expectations, the analyses revealed phylogeographical signals suggesting that the investigated organisms demonstrate independent post-glacial trajectories as well as distinct contemporaneous demographic parameters, despite their mutualistic interaction. Main conclusionsThe mutualistic partners investigated here are likely to be experiencing distinct and independent evolutionary dynamics because of their contrasting life-history traits (e.g. dispersal abilities), as well as distinct hubs and migration routes. Such conditions would prevent and/or erase any signature of co-structuring of lineages in space and time. As a result, the lack of phylogeographical congruence driven by differences in life-history traits might have arisen irrespective of the three species having shared similar Pleistocene glacial refugia.
Resumo:
Colombian strain of Trypanosoma cruzi, biodeme Type III (T. cruzi I), has been cloned by micromanipulation at two phases of the acute infection: early (10 days ) and advanced (30 days). Twelve clones were obtained therefrom. Characterization by their biological and biochemical behavior showed an identity among the several clones and their parental strain, albeit with different degrees of virulence. Molecular characterization of the kinetoplast DNA (kDNA) after amplification by polymerase chain reaction revealed identical profiles of the bands from the kDNA minicircle by the analysis of restriction fragment lenght polymorphism for the isolated clones, their parental strain, and to the clones isolated at two different phases of the infection. Results suggest the predominance of a "principal clone", in the composition of the Colombian strain, responsible for the biological and biochemical behavior. However, no relationship was detected between the molecular profile of kDNA and the degree of virulence presented by the several clones.
Resumo:
The great difficulties in treating people and animals suffering from cryptosporidiosis have prompted the development of in vitro experimental models. Due to the models of in vitro culture, new extracellular stages of Cryptosporidium have been demonstrated. The development of these extracellular phases depends on the technique of in vitro culture and on the species and genotype of Cryptosporidium used. Here, we undertake the molecular characterization by polymerase chain reaction-restriction fragment lenght polymorphism of different Cryptosporidium isolates from calves, concluding that all are C. parvum of cattle genotype, although differing in the nucleotide at positions 472 and 498. Using these parasites, modified the in vitro culture technique for HCT-8 cells achieving greater multiplication of parasites. The HCT-8 cell cultures, for which the culture had not been renewed in seven days, were infected with C. parvum sporozoites in RPMI-1640 medium with 10% IFBS, CaCl2 and MgCl2 1 mM at pH 7.2. Percentages of cell parasitism were increased with respect to control cultures (71% at 48 h vs 14.5%), even after two weeks (47% vs 1.9%). Also, the percentage of extracellular stages augmented (25.3% vs 1.1% at 96 h). This new model of in vitro culture of C. parvum will enable easier study of the developmental phases of C. parvum in performing new chemotherapeutic assays.
Resumo:
Background: Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes and their economic importance as common agricultural pest organisms make this family particularly interesting for studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis. By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle.Results: While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an ecological speciation framework.Conclusions: The question of whether this case of ecological differentiation occurred in sympatry or allopatry remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is likely driven by a recent shift in host plant use.
Resumo:
Fifty-five clinical and environmental Aspergillus fumigatus isolates from Mexico, Argentina, France and Peru were analyzed to determine their genetic variability, reproductive system and level of differentiation using amplified fragment length polymorphism markers. The level of genetic variability was assessed by measuring the percentage of polymorphic loci, number of effective alleles, expected heterozygocity and by performing an association index test (I A). The degree of genetic differentiation and variation was determined using analysis of molecular variance at three levels. Using the paired genetic distances, a dendrogram was built to detect the genetic relationship among alleles. Finally, a network of haplotypes was constructed to determine the geographic relationship among them. The results indicate that the clinical isolates have greater genetic variability than the environmental isolates. The I A of the clinical and environmental isolates suggests a recombining population structure. The genetic differentiation among isolates and the dendrogram suggest that the groups of isolates are different. The network of haplotypes demonstrates that the majority of the isolates are grouped according to geographic origin.
Resumo:
In this study, a genotypification of Leishmaniawas performed using polimerase chain reaction-restriction fragment length polymorfism (PCR-RFLP) and sequencing techniques to identify species of Leishmaniaparasites in phlebotomine sand flies and dogs naturally infected. Between January-February of 2009, CDC light traps were used to collect insect samples from 13 capture sites in the municipality of Posadas, which is located in the province of Misiones of Argentina. Sand flies identified as Lutzomyia longipalpiswere grouped into 28 separate pools for molecular biological analysis. Canine samples were taken from lymph node aspirates of two symptomatic stray animals that had been positively diagnosed with canine visceral leishmaniasis. One vector pool of 10 sand flies (1 out of the 28 pools tested) and both of the canine samples tested positively for Leishmania infantumby PCR and RFLP analysis. PCR products were confirmed by sequencing and showed a maximum identity with L. infantum. Given that infection was detected in one out of the 28 pools and that at least one infected insect was infected, it was possible to infer an infection rate at least of 0.47% for Lu. longipalpisamong the analyzed samples. These results contribute to incriminate Lu. longipalpis as the vector of L. infantumin the municipality of Posadas, where cases of the disease in humans and dogs have been reported since 2005.
Resumo:
Over the last 20 years, there has been an increase in the number of leishmaniasis cases in Brazil. Belo Horizonte (BH) is one of the most highly populated Brazilian cities that is affected by visceral leishmaniasis (VL). The health services in BH are coordinated by a central nucleus that is subdivided into nine sanitary districts. Historically, the highest level of human VL cases was found in the northeast sanitary district (NSD). The objective of our study was to detect Leishmania infection in the phlebotomine sand flies collected in the NSD by dissection and molecular approaches. Following the occurrence of human VL cases in 2005, entomological captures were performed from July 2006-June 2007. Out of the 245 sand flies dissected, only three Lutzomyia longipalpis spp contained flagellates. The female sand flies were grouped into 120 pools according to date, collection site and species, with approximately 10 individual sand flies in each pool. Subsquently, the DNA was extracted and Leishmania spp and other parasites were detected and identified by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorfism. Leishmania infantum was present in at least 19% of the Lu. longipalpis collected, in 3.8% of the Nyssomiya whitmani collected, in 33.3% of the Evandromiya termitophila collected and in 14.3% of the Nyssomiya intermedia collected. When the females of the cortelezzii complex were compared with each other, 3.2% of the females were infected with Leishmania braziliensis, whereas 3.2% of the females were infected with trypanosomatids.