1000 resultados para Reconstrução de imagens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation had the teacher as object of study, whose objective was to know and analyze the teacher‟s Social Representations (SR) shared by undergraduates, as from images of this professional (teachers´ photos of several levels and school systems). It was searched out the process of depreciation or estimation, in which the teaching profession has been passing, trying to catch, specifically, possible existing correlations among such SR and the reflections in the attitudes developed by these students about their own development and professional practice. The data collection was carried out at the Federal University of Piauí Teresina with 165 undergraduates (15 from each course). It was applied a semi-structured interview, mediated by iconographic grouping (SALES, 2000, 2007), outlining a methodological widening of the studies fulfilled by (ROAZZI, 1995). It was used the function Factor Analysis, available in the SPSS (Statistical Package for the Social Sciences) for the analysis of the quantitative data, and it was proceeded a content analysis through the categorical analysis technique (BARDIN, 1977) for the analytical procedures of the qualitative data. It was resorted to the SR theory (MOSCOVICI, 1978) for the data interpretation and the Theory of Signs (PEIRCE. 1995) in the understanding of the decodification processes of signs that were present in the photos worked. It became evident that the undergraduates perceived the teaching profession inserted in a hierarchical scale of values (positive/negative), directly related to the school system and the teaching level, in which the teacher works. Most undergraduates share teacher‟s SR of negative content, consolidating the hegemonic SR about the teacher‟s social depreciation, although some of them imagine themselves, in the future, inserted among the teachers more appraised, showing that the SR orientate the positive and negative attitudes about the teacher. The presence of SR that mobilize the interviewers‟ attitudes in opposite senses related to the teacher, offer evidence of the necessity of future studies that can use a methodology more focused to understand other motivation factors that the undergraduates give evidence of having to the course they have chosen, besides the ones inferred by the SR caught in this investigation, as well as to establish a correlation between the teacher‟s SR (positive and negative) and the social economic level of the interviewers that share them. Such data revealed itself necessary since the literature signalizes for a relation between the course chosen and the applicant‟s social-economic level, and that the applicants‟ objective conditions to the licenciature courses are related to the subjective hopes that their group supplies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to analyze the historical and epistemological development of the Group concept related to the theory on advanced mathematical thinking proposed by Dreyfus (1991). Thus it presents pedagogical resources that enable learning and teaching of algebraic structures as well as propose greater meaning of this concept in mathematical graduation programs. This study also proposes an answer to the following question: in what way a teaching approach that is centered in the Theory of Numbers and Theory of Equations is a model for the teaching of the concept of Group? To answer this question a historical reconstruction of the development of this concept is done on relating Lagrange to Cayley. This is done considering Foucault s (2007) knowledge archeology proposal theoretically reinforced by Dreyfus (1991). An exploratory research was performed in Mathematic graduation courses in Universidade Federal do Pará (UFPA) and Universidade Federal do Rio Grande do Norte (UFRN). The research aimed to evaluate the formation of concept images of the students in two algebra courses based on a traditional teaching model. Another experience was realized in algebra at UFPA and it involved historical components (MENDES, 2001a; 2001b; 2006b), the development of multiple representations (DREYFUS, 1991) as well as the formation of concept images (VINNER, 1991). The efficiency of this approach related to the extent of learning was evaluated, aiming to acknowledge the conceptual image established in student s minds. At the end, a classification based on Dreyfus (1991) was done relating the historical periods of the historical and epistemological development of group concepts in the process of representation, generalization, synthesis, and abstraction, proposed here for the teaching of algebra in Mathematics graduation course

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote Communities. Absence of artifacts and minimization of the exacerbated consumption of modernity. The desire which spread beyond what reality can provide. Expressions like this are present in this paper which focus in the social representations of school built by residents who live at the riversides of Môa and Azul Rivers, in Mâncio Lima, Acre State. To do so, we used the methodological contribution of the semi-structured interview, observation of the place while a natural inhabitant of the region, and also photos analyses of local reality. A key feature of the riverside homes is the glued paper on the walls of houses forming a panel set of portraits, pictures, letters and numbers for all appreciated. Regardless of whether or not read, there is admiration for the color of the images, the layout of the letters, and the things of the city awakening the desire to obtain school knowledge. The resident of this Amazon region maintains a close relationship between thinking, acting and feeling living harmonically with nature that connects them to the ideal landscape which is revisited by the graphic material that attracts wondering what exists beyond the shores of the river, beyond the horizon of green forests. It is a life entirely accomplished by the imaginary where exist a framed landscape merged and confused by the real and the supernatural, in which men and gods walk together by the forest, sailing by the rivers and seek a possible aesthetic between the real and ideal. The Theory of Social Representations spread by Serge Moscovici (2005) and Jodelet (2001) guided our gaze on the understanding what the school is and its representation to the riversides, as well to reveal the relation they practice with the knowledge that is spread by the mystification and the knowledge that is practice daily. Based in Bardin s thematic analysis (2004) we tried to raise such contents combining them in five analysis categories

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rapid growth of databases of various types (text, multimedia, etc..), There exist a need to propose methods for ordering, access and retrieve data in a simple and fast way. The images databases, in addition to these needs, require a representation of the images so that the semantic content characteristics are considered. Accordingly, several proposals such as the textual annotations based retrieval has been made. In the annotations approach, the recovery is based on the comparison between the textual description that a user can make of images and descriptions of the images stored in database. Among its drawbacks, it is noted that the textual description is very dependent on the observer, in addition to the computational effort required to describe all the images in database. Another approach is the content based image retrieval - CBIR, where each image is represented by low-level features such as: color, shape, texture, etc. In this sense, the results in the area of CBIR has been very promising. However, the representation of the images semantic by low-level features is an open problem. New algorithms for the extraction of features as well as new methods of indexing have been proposed in the literature. However, these algorithms become increasingly complex. So, doing an analysis, it is natural to ask whether there is a relationship between semantics and low-level features extracted in an image? and if there is a relationship, which descriptors better represent the semantic? which leads us to a new question: how to use descriptors to represent the content of the images?. The work presented in this thesis, proposes a method to analyze the relationship between low-level descriptors and semantics in an attempt to answer the questions before. Still, it was observed that there are three possibilities of indexing images: Using composed characteristic vectors, using parallel and independent index structures (for each descriptor or set of them) and using characteristic vectors sorted in sequential order. Thus, the first two forms have been widely studied and applied in literature, but there were no records of the third way has even been explored. So this thesis also proposes to index using a sequential structure of descriptors and also the order of these descriptors should be based on the relationship that exists between each descriptor and semantics of the users. Finally, the proposed index in this thesis revealed better than the traditional approachs and yet, was showed experimentally that the order in this sequence is important and there is a direct relationship between this order and the relationship of low-level descriptors with the semantics of the users

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multi-resolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen s self-organizing map. Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multi-resolution, iterative scheme. Reconstruction was experimented with several point sets, induding different shapes and sizes. Results show generated meshes very dose to object final shapes. We include measures of performance and discuss robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a method to determine the depth of objects in a scene using a combination between stereo vision and self-calibration techniques. Determining the rel- ative distance between visualized objects and a robot, with a stereo head, it is possible to navigate in unknown environments. Stereo vision techniques supply a depth measure by the combination of two or more images from the same scene. To achieve a depth estimates of the in scene objects a reconstruction of this scene geometry is necessary. For such reconstruction the relationship between the three-dimensional world coordi- nates and the two-dimensional images coordinates is necessary. Through the achievement of the cameras intrinsic parameters it is possible to make this coordinates systems relationship. These parameters can be gotten through geometric camera calibration, which, generally is made by a correlation between image characteristics of a calibration pattern with know dimensions. The cameras self-calibration allows the achievement of their intrinsic parameters without using a known calibration pattern, being possible their calculation and alteration during the displacement of the robot in an unknown environment. In this work a self-calibration method based in the three-dimensional polar coordinates to represent image features is presented. This representation is determined by the relationship between images features and horizontal and vertical opening cameras angles. Using the polar coordinates it is possible to geometrically reconstruct the scene. Through the proposed techniques combination it is possible to calculate a scene objects depth estimate, allowing the robot navigation in an unknown environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, covering since communication aspects to issues related with energy efficiency. When source sensors are endowed with cameras for visual monitoring, a new scope of challenges is raised, as transmission and monitoring requirements are considerably changed. Particularly, visual sensors collect data following a directional sensing model, altering the meaning of concepts as vicinity and redundancy but allowing the differentiation of source nodes by their sensing relevancies for the application. In such context, we propose the combined use of two differentiation strategies as a novel QoS parameter, exploring the sensing relevancies of source nodes and DWT image coding. This innovative approach supports a new scope of optimizations to improve the performance of visual sensor networks at the cost of a small reduction on the overall monitoring quality of the application. Besides definition of a new concept of relevance and the proposition of mechanisms to support its practical exploitation, we propose five different optimizations in the way images are transmitted in wireless visual sensor networks, aiming at energy saving, transmission with low delay and error recovery. Putting all these together, the proposed innovative differentiation strategies and the related optimizations open a relevant research trend, where the application monitoring requirements are used to guide a more efficient operation of sensor networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual attention is a very important task in autonomous robotics, but, because of its complexity, the processing time required is significant. We propose an architecture for feature selection using foveated images that is guided by visual attention tasks and that reduces the processing time required to perform these tasks. Our system can be applied in bottom-up or top-down visual attention. The foveated model determines which scales are to be used on the feature extraction algorithm. The system is able to discard features that are not extremely necessary for the tasks, thus, reducing the processing time. If the fovea is correctly placed, then it is possible to reduce the processing time without compromising the quality of the tasks outputs. The distance of the fovea from the object is also analyzed. If the visual system loses the tracking in top-down attention, basic strategies of fovea placement can be applied. Experiments have shown that it is possible to reduce up to 60% the processing time with this approach. To validate the method, we tested it with the feature algorithm known as Speeded Up Robust Features (SURF), one of the most efficient approaches for feature extraction. With the proposed architecture, we can accomplish real time requirements of robotics vision, mainly to be applied in autonomous robotics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to seek a more viable alternative for the calculation of differences in images of stereo vision, using a factor that reduces heel the amount of points that are considered on the captured image, and a network neural-based radial basis functions to interpolate the results. The objective to be achieved is to produce an approximate picture of disparities using algorithms with low computational cost, unlike the classical algorithms