991 resultados para Receiver function
Resumo:
The basic requirement for an autopilot is fast response and minimum steady state error for better guidance performance. The highly nonlinear nature of the missile dynamics due to the severe kinematic and inertial coupling of the missile airframe as well as the aerodynamics has been a challenge for an autopilot that is required to have satisfactory performance for all flight conditions in probable engagements. Dynamic inversion is very popular nonlinear controller for this kind of scenario. But the drawback of this controller is that it is sensitive to parameter perturbation. To overcome this problem, neural network has been used to capture the parameter uncertainty on line. The choice of basis function plays the major role in capturing the unknown dynamics. Here in this paper, many basis function has been studied for approximation of unknown dynamics. Cosine basis function has yield the best response compared to any other basis function for capturing the unknown dynamics. Neural network with Cosine basis function has improved the autopilot performance as well as robustness compared to Dynamic inversion without Neural network.
Resumo:
Multiple input multiple output (MIMO) systems with large number of antennas have been gaining wide attention as they enable very high throughputs. A major impediment is the complexity at the receiver needed to detect the transmitted data. To this end we propose a new receiver, called LRR (Linear Regression of MMSE Residual), which improves the MMSE receiver by learning a linear regression model for the error of the MMSE receiver. The LRR receiver uses pilot data to estimate the channel, and then uses locally generated training data (not transmitted over the channel), to find the linear regression parameters. The proposed receiver is suitable for applications where the channel remains constant for a long period (slow-fading channels) and performs quite well: at a bit error rate (BER) of 10(-3), the SNR gain over MMSE receiver is about 7 dB for a 16 x 16 system; for a 64 x 64 system the gain is about 8.5 dB. For large coherence time, the complexity order of the LRR receiver is the same as that of the MMSE receiver, and in simulations we find that it needs about 4 times as many floating point operations. We also show that further gain of about 4 dB is obtained by local search around the estimate given by the LRR receiver.
Resumo:
Accurately characterizing the time-varying interference caused to the primary users is essential in ensuring a successful deployment of cognitive radios (CR). We show that the aggregate interference at the primary receiver (PU-Rx) from multiple, randomly located cognitive users (CUs) is well modeled as a shifted lognormal random process, which is more accurate than the lognormal and the Gaussian process models considered in the literature, even for a relatively dense deployment of CUs. It also compares favorably with the asymptotically exact stable and symmetric truncated stable distribution models, except at high CU densities. Our model accounts for the effect of imperfect spectrum sensing, which depends on path-loss, shadowing, and small-scale fading of the link from the primary transmitter to the CU; the interweave and underlay modes or CR operation, which determine the transmit powers of the CUs; and time-correlated shadowing and fading of the links from the CUs to the PU-Rx. It leads to expressions for the probability distribution function, level crossing rate, and average exceedance duration. The impact of cooperative spectrum sensing is also characterized. We validate the model by applying it to redesign the primary exclusive zone to account for the time-varying nature of interference.
Resumo:
We analytically evaluate the large deviation function in a simple model of classical particle transfer between two reservoirs. We illustrate how the asymptotic long-time regime is reached starting from a special propagating initial condition. We show that the steady-state fluctuation theorem holds provided that the distribution of the particle number decays faster than an exponential, implying analyticity of the generating function and a discrete spectrum for its evolution operator.
Resumo:
We generalize the method of A. M. Polyakov, Phys. Rev. E 52, 6183 (1995)] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension Eur. Phys. J.B 9, 725 (1999)], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Karman-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD.
Resumo:
Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.
Resumo:
Classification of pharmacologic activity of a chemical compound is an essential step in any drug discovery process. We develop two new atom-centered fragment descriptors (vertex indices) - one based solely on topological considerations without discriminating atomor bond types, and another based on topological and electronic features. We also assess their usefulness by devising a method to rank and classify molecules with regard to their antibacterial activity. Classification performances of our method are found to be superior compared to two previous studies on large heterogeneous data sets for hit finding and hit-to-lead studies even though we use much fewer parameters. It is found that for hit finding studies topological features (simple graph) alone provide significant discriminating power, and for hit-to-lead process small but consistent improvement can be made by additionally including electronic features (colored graph). Our approach is simple, interpretable, and suitable for design of molecules as we do not use any physicochemical properties. The singular use of vertex index as descriptor, novel range based feature extraction, and rigorous statistical validation are the key elements of this study.
Resumo:
In this paper we establish that the Lovasz theta function on a graph can be restated as a kernel learning problem. We introduce the notion of SVM-theta graphs, on which Lovasz theta function can be approximated well by a Support vector machine (SVM). We show that Erdos-Renyi random G(n, p) graphs are SVM-theta graphs for log(4)n/n <= p < 1. Even if we embed a large clique of size Theta(root np/1-p) in a G(n, p) graph the resultant graph still remains a SVM-theta graph. This immediately suggests an SVM based algorithm for recovering a large planted clique in random graphs. Associated with the theta function is the notion of orthogonal labellings. We introduce common orthogonal labellings which extends the idea of orthogonal labellings to multiple graphs. This allows us to propose a Multiple Kernel learning (MKL) based solution which is capable of identifying a large common dense subgraph in multiple graphs. Both in the planted clique case and common subgraph detection problem the proposed solutions beat the state of the art by an order of magnitude.
Resumo:
The effect of structure height on the lightning striking distance is estimated using a lightning strike model that takes into account the effect of connecting leaders. According to the results, the lightning striking distance may differ significantly from the values assumed in the IEC standard for structure heights beyond 30m. However, for structure heights smaller than about 30m, the results show that the values assumed by IEC do not differ significantly from the predictions based on a lightning attachment model taking into account the effect of connecting leaders. However, since IEC assumes a smaller striking distance than the ones predicted by the adopted model one can conclude that the safety is not compromised in adhering to the IEC standard. Results obtained from the model are also compared with Collection Volume Method (CVM) and other commonly used lightning attachment models available in the literature. The results show that in the case of CVM the calculated attractive distances are much larger than the ones obtained using the physically based lightning attachment models. This indicates the possibility of compromising the lightning protection procedures when using CVM. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In an underlay cognitive radio (CR) system, a secondary user can transmit when the primary is transmitting but is subject to tight constraints on the interference it causes to the primary receiver. Amplify-and-forward (AF) relaying is an effective technique that significantly improves the performance of a CR by providing an alternate path for the secondary transmitter's signal to reach the secondary receiver. We present and analyze a novel optimal relay gain adaptation policy (ORGAP) in which the relay is interference aware and optimally adapts both its gain and transmit power as a function of its local channel gains. ORGAP minimizes the symbol error probability at the secondary receiver subject to constraints on the average relay transmit power and on the average interference caused to the primary. It is different from ad hoc AF relaying policies and serves as a new and fundamental theoretical benchmark for relaying in an underlay CR. We also develop a near-optimal and simpler relay gain adaptation policy that is easy to implement. An extension to a multirelay scenario with selection is also developed. Our extensive numerical results for single and multiple relay systems quantify the power savings achieved over several ad hoc policies for both MPSK and MQAM constellations.
Resumo:
In this paper, we propose a multiple-input multiple-output (MIMO) receiver algorithm that exploits channel hardening that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes, where is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the matrix. We also propose a simple estimation scheme which directly obtains an estimate of (instead of an estimate of), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the channel hardening-exploiting message passing (CHEMP) receiver. The proposed CHEMP receiver achieves very good performance in large-scaleMIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes.
Resumo:
Inference of molecular function of proteins is the fundamental task in the quest for understanding cellular processes. The task is getting increasingly difficult with thousands of new proteins discovered each day. The difficulty arises primarily due to lack of high-throughput experimental technique for assessing protein molecular function, a lacunae that computational approaches are trying hard to fill. The latter too faces a major bottleneck in absence of clear evidence based on evolutionary information. Here we propose a de novo approach to annotate protein molecular function through structural dynamics match for a pair of segments from two dissimilar proteins, which may share even <10% sequence identity. To screen these matches, corresponding 1 mu s coarse-grained (CG) molecular dynamics trajectories were used to compute normalized root-mean-square-fluctuation graphs and select mobile segments, which were, thereafter, matched for all pairs using unweighted three-dimensional autocorrelation vectors. Our in-house custom-built forcefield (FF), extensively validated against dynamics information obtained from experimental nuclear magnetic resonance data, was specifically used to generate the CG dynamics trajectories. The test for correspondence of dynamics-signature of protein segments and function revealed 87% true positive rate and 93.5% true negative rate, on a dataset of 60 experimentally validated proteins, including moonlighting proteins and those with novel functional motifs. A random test against 315 unique fold/function proteins for a negative test gave >99% true recall. A blind prediction on a novel protein appears consistent with additional evidences retrieved therein. This is the first proof-of-principle of generalized use of structural dynamics for inferring protein molecular function leveraging our custom-made CG FF, useful to all. (C) 2014 Wiley Periodicals, Inc.
Beadex Function in the Motor Neurons Is Essential for Female Reproduction in Drosophila melanogaster
Resumo:
Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons.
Resumo:
We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping of this model to the zero-range process, we write down an exact formula for the partition function and the particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple analytical expression for the generating function of the correlation function. This result is applied to the hop rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays algebraically with a continuously varying exponent b - 2. We also calculate the two-point correlation function above the critical density and find that the correlation length diverges with a critical exponent nu = 1/(b - 2) for b < 3 and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.
Resumo:
The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better understanding of pathogenesis and to accelerate the process of drug target discovery. (C) 2014 Elsevier Ltd. All rights reserved.